Why not Choose a Better Job?

Flexibility, Social Norms, and Gender Gaps in Japan
Kazuharu Yanagimoto ©
kazuharu.yanagimoto@cemfi.edu.es
CEMFI

June 7, 2023

Japan ranks 116th in 2022 gender gap, worst in East Asia, Pacific

$\underset{\text { кrooo }}{\circ}$ KYODO NEWS - Jul 13, 2022-18:37 | All, Japan

(\because ค $(\rightarrow$

GENEVA - Japan ranked 116th among 146 countries in the gender gap rankings this year, at the bottom of the East Asia and Pacific group, and the Group of Seven major economies, a Swiss-based think tank said Wednesday.

The report by the World Economic Forum showed women's participation in the political and economic arenas remains particularly low in Japan. The country, however, attained high scores in access to education and health.

Japan ranked 120th among 156 countries in last year's rankings.

Female Workers in Japan

Gap in Median Earnings of Full-time Workers in 2019

Fraction of Part-time in Female Workers in 2019

Female Laborforce Participation in 2019

- Large gap in earnings and high ratio of part-time jobs
- Female participation is not low

Why is the gender wage gap large in Japan?
Why is the fraction of part-time workers large for women in Japan?

What Do I Do?

Document Female Employment in Japan

- Large gender diff. in participation, occupations, working hours, and wage
- Regular vs Non-regular job \& Social norms on gender roles

Build a model

- Choices on occupations and working hours
\rightarrow Occupations differ in the way hours map into earnings (linear vs. convex)
- Utility cost associated to social norms
\rightarrow Wives earnings more than husbands
Model explains
- All gender gaps in participation
- 33\% in occupational choices, 74% in labor hours, and 34\% in wage

Facts

Data

Japan Panel Study of Employment Dynamics (JPSED)

- 57,284 men and women older than 15 in Japan
- Panel data 2015-2019
- Earnings, working hours, housework, labor contracts
- Use samples aged 25-59

Survey on Dual-Income Couples' Household Economy and Attitudes

- 2200 couples, women (men) aged 35-49 (30-55), in the Greater Tokyo Area
- One-year survey in 2014
- Earnings, working hours, housework, types of contracts

Regular and Non-regular Jobs

In Japanese statistics, a definition is used: Regular and Non-regular jobs

- Based on "how their occupations are classified in the company"
- There is no precise definition, but typically,

	Regular	Non-Regular
Contract	Permanent	Temporary
Hours (week)	40/40+	Lower and Dispersed
Wage	High	Low

In JPSED,

- 92 \% (91 \%) of male (female) regular workers have permanent contracts
- 13 \% (14 \%) of male (female) non-regular workers have permanent contracts

Weekly Working Hours

Men

Women

Hourly Wage

Occupational Choices of Married Men and Women

Men

25-29 30-34 35-39 40-44 45-49 50-54 55-59 Total
Women

25-29 30-34 35-39 40-44 45-49 50-54 55-59 Total

Why Do Women Choose Non-regular Jobs?

Flexibility of the Job

Reasons for Choosing Non-regular Job, Women

Job Flexibility and Convex Earning

Goldin (2014) defines the two types of jobs by earning schedule

- Linear jobs are lower wages and high flexibility
- Non-linear (convex) jobs are high wage and low flexibility

These characteristics correspond to Regular and Non-regular jobs! \qquad

Social Norms

Bertrand, Kamenica, and Pan (2015)

- A gap in the density of the wife's share of earnings at 50\% in US
- Interpreted as the existence of social norms

Japanese Data

- A stark gap is seen in Japanese data
- Rising pattern just before 50\%
- Marriage penalty Mariage enaly

Before Going to the Model...

Key Features

1. Job Flexibility (Regular vs. Non-regular)
2. Social Norm on Wife's Earnings cascsountry coparison

Gender Gaps

	Description	Gap	Men	Women
Partcipation	Participation rate	0.27	98%	70%
Ocuupation	Fraction of regular workers	0.59	89%	32%
Labor Hours	Mean of log weekly working hours	0.49	44.2 h	20.3 h
Wage	Mean of log hourly wage	0.76	2958 JPY	1534 JPY
Data: married, 25-59 aged in JPSED2016-2020				

Model

Households' Problem

- Economy consists of couples, including husbands $(g=m)$ and wives $(g=f)$
- choose an occupation j_{g} from regular R, non-regular $N R$, not-working $N W$
- Endowed one unit of time, and choose working hours h_{m}, h_{f}, home hours T_{m}, T_{f}, and leisure $1-h_{m}-T_{m}, 1-h_{f}-T_{f}$

$$
\max _{h_{m}, h_{f}, T_{m}, T_{f}, j_{m}, j_{f}} U=\log c+\gamma \log H\left(1-h_{m}-T_{m}, 1-h_{f}-T_{f}\right)-\delta 1\left\{e_{m}<e_{f}\right\}
$$

subject to

$$
\begin{aligned}
c & =e\left(h_{m}, j_{m}\right)+e\left(h_{f}, j_{f}\right) \\
T & =T_{m}+T_{f}
\end{aligned}
$$

$H(\cdot)$: Joint leisure function
$e(h, j)$: Earning
T : Home hours requirement
δ : Utility cost

Productivity

Each husband and wife is endowed job specific productivity:

$$
\left(\begin{array}{c}
a_{m, R} \\
a_{f, R} \\
a_{m, N R} \\
a_{f, N R}
\end{array}\right) \sim \log \mathcal{N}\left(\left(\begin{array}{c}
0 \\
0 \\
\mu_{N R} \\
\mu_{N R}
\end{array}\right),\left(\begin{array}{cccc}
\sigma^{2} & \rho_{m f} \sigma^{2} & \rho_{R, N R} \sigma^{2} & \rho_{R, N R} \rho_{m f} \sigma^{2} \\
\cdot & \sigma^{2} & \rho_{R, N R} \rho_{m f} \sigma^{2} & \rho_{R, N R} \sigma^{2} \\
\cdot & \cdot & \sigma^{2} & \rho_{m f} \sigma^{2} \\
\cdot & \cdot & \cdot & \sigma^{2}
\end{array}\right)\right)
$$

- $\mu_{N R}<0 \Rightarrow$ Non-regular workers earns less than regular worker
- $\rho_{m f}>0 \Rightarrow$ Assortative Mating
- $\rho_{R, N R}>0 \Rightarrow$ Regular and Non-regular abilities are linked

No Gender Difference in Productivity

Convex Wage Schedules

Regular Jobs
$e(h, R)= \begin{cases}a_{R} h^{1+\theta} & h<\bar{h} \\ a_{R}\left(\bar{h}^{1+\theta}+\lambda_{R} \bar{h}^{\theta}(h-\bar{h})\right) & h>\bar{h}\end{cases}$

Non-regular Jobs
$e(h, N R)= \begin{cases}a_{N R} h & h \leq \bar{h} \\ a_{N R}\left(\bar{h}+\lambda_{N R}(h-\bar{h})\right) & h>\bar{h}\end{cases}$

Leisure Function

$$
H=\left(\nu\left(1-h_{m}-T_{m}\right)^{\xi}+(1-\nu)\left(1-h_{f}-T_{f}\right)^{\xi}\right)^{1 / \xi}
$$

ν : share parameter. Each household is endowed $\nu \sim \operatorname{Beta}\left(\alpha_{\nu}, \beta_{\nu}\right)$ ξ : complementarity. $\xi<0 \Rightarrow$ complement
Home Hours Requirement

$$
\begin{aligned}
T & =T_{m}+T_{f} \\
\frac{1}{2} T & \sim \operatorname{Beta}\left(\alpha_{T}, \beta_{T}\right)
\end{aligned}
$$

- Households has a home hours requirement $T \in[0,2]$
- T does not increase the utility
- captures the heterogeneity of home hours requirements (children)

Estimation

Calibration Strategy

15 Parameters

$$
\{\underbrace{\lambda_{R}, \lambda_{N R}, \theta,}_{\text {production function }} \underbrace{\mu_{N R}, \sigma^{2}, \rho_{R, N R}, \rho_{m f}}_{\text {productivity }}, \underbrace{\gamma, \xi, \alpha_{\nu}, \beta_{\nu}}_{\text {leisure }}, \underbrace{\alpha_{T}, \beta_{T}}_{\text {home hours }}, \underbrace{\alpha_{\delta}, \beta_{\delta}}_{\text {social norm }}\}
$$

Method of Simulated Moments

1. Model produces occupations, working hours, and wages of household
2. Compute 15 moments (e.g. ratio of regular workers, mean of working hours, gender correlation of wage...)
3. Minimize the distance between moments from data and model

Estimation

Parmeter	Value Target	Data	Model
λ_{R}	0.57 mean of h_{f} for regular workers	0.50	0.48
$\lambda_{N R}$	0.63 mean of h_{f} for NR workers	0.30	0.27
θ	2.96 share of regular workers, females	0.32	0.37
$\mu_{N R}$	-3.15 share of NR workers, females	0.38	0.28
σ	1.03 s.d. of In w_{f} for R workers	0.72	0.72
$\rho_{R, N R}$	0.14 mean diff. of In $W_{f, R}$ and In $W_{f, N R}$	0.62	0.62
$\rho_{m f}$	0.01 corr. of log wages, R $\times R$ couples	0.49	0.50
y	0.84 s.d. of h_{f} for regular workers	0.11	0.11
ξ	-8.29 s.d. of h_{f} for NR workers	0.14	0.15
a_{v}	13.04 mean of T_{m} for regular workers	0.14	0.13
β_{v}	1.15 mean of T_{m} for NR workers	0.13	0.14
a_{T}	1.59 mean of T_{f} for regular workers	0.28	0.21
β_{T}	3.57 mean of T_{f} for NR workers	0.32	0.37
a_{δ}	0.59 share of couples with em < e	0.07	0.08
β_{δ}	11.81 corr. of working hours, couples	0.19	0.18

Estimation

Parmeter	Value Target	Data	Model
λ_{R}	0.57 mean of h_{f} for regular workers	0.50	0.48
$\lambda_{\text {NR }}$	0.63 mean of h_{f} for NR workers	0.30	0.27
θ	2.96 share of regular workers, females	0.32	0.37
$\mu_{\text {NR }}$	-3.15 share of NR workers, females	0.38	0.28
σ	1.03 s.d. of In w_{f} for R workers	0.72	0.72
$\rho_{\text {R, }}$ NR	0.14 mean diff. of $\ln \mathrm{W}_{\mathrm{f}, \mathrm{R}}$ and $\ln \mathrm{W}_{\mathrm{f}, \mathrm{NR}}$	0.62	0.62
Pmf	0.01 corr. of log wages, $\mathrm{R} \times \mathrm{R}$ couples	0.49	0.50
Y	0.84 s.d. of h_{f} for regular workers	0.11	0.11
ξ	-8.29 s.d. of h_{f} for NR workers	0.14	0.15
a_{v}	13.04 mean of T_{m} for regular workers	0.14	0.13
β_{v}	1.15 mean of T_{m} for NR workers	0.13	0.14
$\mathrm{a}_{\text {T }}$	1.59 mean of T_{f} for regular workers	0.28	0.21
$\beta_{\text {T }}$	3.57 mean of T_{f} for NR workers	0.32	0.37
a_{δ}	0.59 share of couples with $\mathrm{e}_{\mathrm{m}}<\mathrm{e}_{\mathrm{f}}$	0.07	0.08
β_{δ}	11.81 corr. of working hours, couples	0.19	0.18

$\xi<0$

- Leisure by husband and wife is complement

Estimation

Parmeter	Value Target	Data	Model	$\xi<0$
λ_{R}	0.57 mean of h_{f} for regular workers	0.50	0.48	
$\lambda_{\text {NR }}$	0.63 mean of h_{f} for NR workers	0.30	0.27	- Leisure by husband and wife
θ	2.96 share of regular workers, females	0.32	0.37	
$\mu_{\text {NR }}$	-3.15 share of NR workers, females	0.38	0.28	
σ	1.03 s.d. of In w_{f} for R workers	0.72	0.72	
$\rho_{\text {R, }}$ NR	0.14 mean diff. of $\ln W_{f, R}$ and $\ln W_{f, ~ N R}$	0.62	0.62	$\alpha_{\nu}=13.04, \beta_{\nu}=1.15$
Pmf	0.01 corr. of log wages, $\mathrm{R} \times \mathrm{R}$ couples	0.49	0.50	- $E[\nu]=0.92>0.5$
y	0.84 s.d. of h_{f} for regular workers	0.11	0.11	
ξ	-8.29 s.d. of $\mathrm{hff}_{\text {f }}$ for NR workers	0.14	0.15	- Husbands have a higher
a_{v}	13.04 mean of T_{m} for regular workers	0.14	0.13	weight on joint leisure
β	1.15 mean of T_{m} for NR workers	0.13	0.14	
${ }_{\text {a }}^{\text {T }}$	1.59 mean of T_{f} for regular workers	0.28	0.21	
β_{T}	3.57 mean of T_{f} for NR workers	0.32	0.37	
a_{δ}	0.59 share of couples with $\mathrm{e}_{\mathrm{m}}<\mathrm{e}_{\mathrm{f}}$	0.07	0.08	
β_{δ}	11.81 corr. of working hours, couples	0.19	0.18	

Estimation

Parmeter	Value Target	Data	Model
λ_{R}	0.57 mean of h_{f} for regular workers	0.50	0.48
$\lambda_{\text {NR }}$	0.63 mean of $\mathrm{hff}_{\text {for }}$ NR workers	0.30	0.27
θ	2.96 share of regular workers, females	0.32	0.37
$\mu_{\text {NR }}$	-3.15 share of NR workers, females	0.38	0.28
σ	1.03 s.d. of In w_{f} for R workers	0.72	0.72
$\rho_{\text {R, NR }}$	0.14 mean diff. of $\ln W_{f, R}$ and $\ln W_{f, N R}$	0.62	0.62
$\rho_{\text {mf }}$	0.01 corr. of log wages, $R \times R$ couples	0.49	0.50
y	0.84 s.d. of h_{f} for regular workers	0.11	0.11
ξ	-8.29 s.d. of h_{f} for NR workers	0.14	0.15
a_{v}	13.04 mean of T_{m} for regular workers	0.14	0.13
β_{v}	1.15 mean of T_{m} for NR workers	0.13	0.14
${ }^{\text {a }}$	1.59 mean of T_{f} for regular workers	0.28	0.21
β_{T}	3.57 mean of T_{f} for NR workers	0.32	0.37
a_{δ}	0.59 share of couples with $\mathrm{e}_{\mathrm{m}}<\mathrm{e}_{\mathrm{f}}$	0.07	0.08
β_{δ}	11.81 corr. of working hours, couples	0.19	0.18

$\xi<0$

- Leisure by husband and wife is complement

$$
\alpha_{\nu}=13.04, \beta_{\nu}=1.15
$$

- $E[\nu]=0.92>0.5$
- Husbands have a higher weight on joint leisure

$$
\alpha_{T}=1.59, \beta_{T}=3.57
$$

- Home hours requirement is 49 hours per week

Occupational Choices (Not-Targeted)

Data

30%	31%	28%
1%	6%	2%
1%	1%	0%

Model

26%	16%	28%
5%	11%	6%
6%	2%	0%

Regular Non-regular Not-work Regular Non-regular Not-work Wife

Time Allocations (Not-Targeted)

Hours Worked
Husband
Wife

Home Hours

Social Norms

Gender Gaps

	Data	Model Model / Data	Pct.
Participation	0.27	0.27	99%
Occupation	0.59	0.19	33%
Labor Hours	0.49	0.36	74%
Wage	0.76	0.26	34%

Gender Gaps

	Data	Model Model / Data	Pct.
Participation	0.27	0.27	99%
Occupation	0.59	0.19	33%
Labor Hours	0.49	0.36	74%
Wage	0.76	0.26	34%

Model explains

- Almost all the gap in the participation rate

Gender Gaps

	Data	Model Model / Data	Pct.
Participation	0.27	0.27	99%
Occupation	0.59	0.19	33%
Labor Hours	0.49	0.36	74%
Wage	0.76	0.26	34%

Model explains

- Almost all the gap in the participation rate
- Significant proportion of other gender gaps

Mechanism

Roles of Job Inflexibility \& Social Norms

1. Inflexibility of Regular Job θ

Given a large amount of housework, women might not choose regular jobs
2. Social Norms δ

Social norms might lead wives to work less or not

To verify these arguments, I conduct experiments of $\theta=0$ and $\delta=0$

Flexible Regular Job: Occupational Choices

Eliminating inflexibility encourages wives to have regular jobs

No Social Norm: Occupational Choices

- More wives choose regular job
- More husbands choose not to work

Mechanism

	Baseline	$\boldsymbol{\theta}=0.0$	$\boldsymbol{\delta}=0.0$ Gap $\boldsymbol{\theta}$	Gap $\boldsymbol{\delta}$
Participation	0.27	0.14	-0.04	
Occupation	0.19	0.01	0.18	
Labor Hours	0.36	0.64	0.17	
Wage	0.26	-0.03	0.22	

Mechanism

| | Baseline | $\boldsymbol{\theta}=0.0$ | $\boldsymbol{\delta}=0.0$ Gap $\boldsymbol{\theta}$ | Gap $\boldsymbol{\delta}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Participation | 0.27 | 0.14 | -0.04 | |
| Occupation | 0.19 | 0.01 | 0.18 | |
| Labor Hours | 0.36 | 0.64 | 0.17 | |
| Wage | 0.26 | -0.03 | 0.22 | |

Job inflexibility θ

- The main element prevents women from having regular jobs
- Wage gap comes from occupational differences

Mechanism

	Baseline	$\boldsymbol{\theta}=0.0$	$\boldsymbol{\delta}=0.0$ Gap $\boldsymbol{\theta}$	Gap $\boldsymbol{\delta}$	
Participation	0.27	0.14	-0.04		
Occupation	0.19	0.01	0.18		
Labor Hours	0.36	0.64	0.17		
Wage	0.26	-0.03	0.22		

Job inflexibility θ

- The main element that prevents women from having regular jobs
- Wage gap comes from occupational differences

Social Norms δ

- Explains intensive and extensive margin of male and female participation

Conclusion

Build a Model

- Regular (inflexible, high wage) vs. Non-Regular (flexible, low wage)
- Social Norms (wives' higher earnings)

Model Explains the Gender Gaps

- Almost all of participation rate
- 33\% in occupational choices, 74\% in labor hours, and 34\% in wage Mechanism
- Job flexibility and social norm play an important role in gender gaps
- Housework services could reduce the gaps under job inflexibility and social norm 1 Appenadx

Outsourcing of Housework

Outsourcing of Housework

Outsourcing housework could increase women's labor supply
Raz-Yurovich and Marx (2019), Halldén and Stenberg (2014)
Also discussed as the impact of low-skilled immigrants
Cortés and Tessada (2017), Barone and Mocetti (2017), Farré, González, and Ortega (2011)
However, those housework services are rarely used in Japan

- Japan has a restrictive policy on immigration
- 2+ member households pay 7.3 EUR per YEAR on average

Baseline Model with Housework Service

$$
\max _{h_{m}, h_{f}, j_{m}, j_{f}} U=\log c+\gamma \log H-\delta 1\left(e_{m}<e_{f}\right)
$$

subject to

$$
\begin{aligned}
c+p t & =e\left(h_{m}, j_{m}\right)+e\left(h_{f}, j_{f}\right) \\
H & =\left(\nu\left(1-h_{m}-T_{m}\right)^{\xi}+(1-\nu)\left(1-h_{f}-T_{f}\right)^{\xi}\right)^{1 / \xi} \\
T & =T_{m}+T_{f}+t
\end{aligned}
$$

t : housework service
p : price of housework service

Experiment

- Fix parameters in the baseline model
- Set price as the median wage of non-regular job $\left(p=\exp \left(\mu_{a_{N R}}\right)\right)$

Outsourcing T: Home Hours

Workers use outside services to do most of the home work

Outsourcing T: Gender Gaps

	Base	Outsourcing t Gap remained	Pct.
Participation	0.27	-0.02	-7%
Occupation	0.19	0.03	15%
Labor Hours	0.36	0.06	17%
Wage	0.26	0.25	97%

Given social norms, housework services

Outsourcing T: Gender Gaps

	Base	Outsourcing t Gap remained	Pct.
Participation	0.27	-0.02	-7%
Occupation	0.19	0.03	15%
Labor Hours	0.36	0.06	17%
Wage	0.26	0.25	97%

Given social norms, housework services

- Reduce gender gaps in participation, occ. choices, and labor hours

Outsourcing T: Gender Gaps

	Base	Outsourcing t Gap remained	Pct.
Participation	0.27	-0.02	-7%
Occupation	0.19	0.03	15%
Labor Hours	0.36	0.06	17%
Wage	0.26	0.25	97%

Given social norms, housework services

- Reduce gender gaps in participation, occupational choices, and labor hours
- Do not reduce wage gap

[^0]Appendix

Related Literature

Home Hours and Gender Gaps

- Erosa et al. (2022)
\rightarrow Models couples' decisions on occupations with different job flexibility
- Cubas, Juhn, and Silos (2019)
\rightarrow Women are penalized for the lack of work in the peak hours (8am-5pm)
Social Norms and Occupational Choices
- Bertrand, Kamenica, and Pan (2015)
\rightarrow A sharp gap in the wife's earnings relative to the husband's earnings
Gender Gaps in Japan
- Kitao and Mikoshiba (2022)
\rightarrow Role of fiscal policies on female labor force participation and occ. choices

Job Flexibility and Convex Earning

To see the convex and linear wage schedules, run

$$
y_{i t}=a_{i}+\lambda_{t}+\left(\sum_{h \in H, h \neq 40} \beta_{h} I_{i t h}\right)+\gamma X_{i t}+\varepsilon_{i t}
$$

$y_{i t}$: yearly earnings of individual i at time t
a_{i} : individual fixed effect
λ_{t} : time fixed effect
$X_{i t}$: age, age-square, educational attainment, industry
$H=\{20-24,25-29, \ldots, 60-64\}: 5$ hour bins for weekly working hours $I_{i t h}$: indicator if i 's working hours in the bin $h \in H$ at time t

This is in the line of Bick, Blandin, and Rogerson (2022)

Earning Curves

- Regular Jobs
\rightarrow Convexity before 40 hours \Rightarrow Concentration at 40 hours
\rightarrow After 40 hours, the slope is different from the below-40-hour
- Non-regular Jobs
\rightarrow Almost linear relationship

Marriage Penalty

If there are social norms regarding wives earning more than husbands, after the marriage, women might choose: lower working hours or changing/quitting jobs

Yearly Earnings (JPY)
Using JPSED2016-2020, I see

- Men and Women married at 2018
- Change in market outcomes in 2017
- Child Penalty as in Kleven et al. (2019)
- Female earnings decline by $4600 € 1$ year after the marriage

Marriage Penalty

Participation Rate

Weekly Working Hours

Ratio of Regular Workers

Hourly Wage (JPY)

Key Features

1. Job Flexibility (Regular vs. Non-regular)
2. Social Norm on Wife's Earnings

Persons in employment by level of difficulty

 to take one or two days of leave at short notice.

Key Features

1. Job Flexibility (Regular vs. Non-regular)

2. Social Norm on Wife's Earnings

If a woman earns more money than her husband,

it's almost certain to cause problems.

References

Barone, Guglielmo, and Sauro Mocetti. 2011. "With a Little Help from Abroad: The Effect of Low-Skilled Immigration on the Female Labour Supply." Labour Economics 18 (5): 664-75. https://doi.org/10.1016/j.labeco.2011.01.010.
Bertrand, Marianne, Emir Kamenica, and Jessica Pan. 2015. "Gender Identity and Relative Income Within Households *." The Quarterly Journal of Economics 130 (2): 571-614. https://doi.org/10.1093/qje/qjv001.
Bick, Alexander, Adam Blandin, and Richard Rogerson. 2022. "Hours and Wages*." The Quarterly Journal of Economics, January, qjac005. https://doi.org/10.1093/qje/qjac005.
Cortés, Patricia, and José Tessada. 2011. "Low-Skilled Immigration and the Labor Supply of Highly Skilled Women." American Economic Journal: Applied Economics 3 (3): 88-123. https://www.jstor.org/stable/41288640.
Cubas, German, Chinhui Juhn, and Pedro Silos. 2019. "Coordinated Work Schedules and the Gender Wage Gap," December, w26548. https://doi.org/10.3386/w26548.
Erosa, Andrés, Luisa Fuster, Gueorgui Kambourov, and Richard Rogerson. 2022. "Hours, Occupations, and Gender Differences in Labor Market Outcomes." American Economic Journal: Macroeconomics 14 (3): 543-90. https://doi.org/10.1257/mac.20200318.
Farré, Lidia, Libertad González, and Francesc Ortega. 2011. "Immigration, Family Responsibilities and the Labor Supply of Skilled Native Women." The B.E. Journal of Economic Analysis \& Policy 11 (1). https://doi.org/10.2202/1935-1682.2875.
Goldin, Claudia. 2014. "A Grand Gender Convergence: Its Last Chapter." American Economic Review 104 (4): 10911119. https://doi.org/10.1257/aer.104.4.1091.

Halldén, Karin, and Anders Stenberg. 2014. "The Relationship Between Hours of Domestic Services and Female Earnings: Panel Register Data Evidence from a Reform." SSRN Electronic Journal. https://doi.org/10.2139/ssrn. 2534703.
Kitao, Sagiri, and Minamo Mikoshiba. 2022. "Why Women Work the Way They Do in Japan: Roles of Fiscal Policies." SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4054049.

Kleven, Henrik, Camille Landais, Johanna Posch, Andreas Steinhauer, and Josef Zweimüller. 2019. "Child Penalties Across Countries: Evidence and Explanations." AEA Papers and Proceedings 109 (May): 122-26. https://doi.org/10.1257/pandp.20191078.
Raz-Yurovich, Liat, and Ive Marx. 2019. "Outsourcing Housework and Highly Skilled Women's Labour Force Participation of a Policy Intervention." European Sociological Review 35 (2): 205-24.
https://doi.org/10.1093/esr/jcz001.

[^0]: back to main

