

# Barriers to Gender Convergence

*The Interactive Effects of Job Inflexibility and Social Norms*

Kazuharu Yanagimoto 

*yanagimoto@econ.kobe-u.ac.jp*

*Kobe University*

January 7, 2026

# Gender Convergence and Social Norms

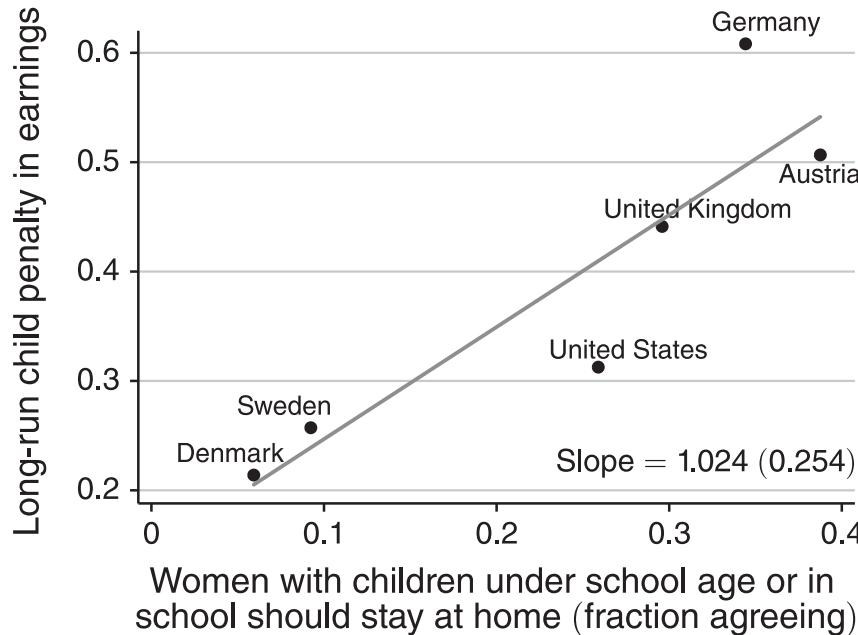



Figure 4 of Kleven et al. (2019)

- ▶ Gender convergence has been substantial, yet incomplete
- ▶ Recent studies argues that remained gaps are due to “Child Penalty”
  - Kleven, Landais, and Søgaard (2019); Kleven, Landais, and Leite-Mariante (2025)
- ▶ Kleven et al. (2019) points out its correlation with social norms on gender roles

# Job flexibility and Gender Gaps

Goldin (2014) classifies jobs into two types by their wage schedules:

- ▶ **Non-linear**: High wage, long hours, inflexible (e.g., MBA, Lawyer)
- ▶ **Linear**: Low wage, short hours, flexible (e.g., Pharmacist)

She argues

- ▶ Trade-off between wage and flexibility
- ▶ Wage penalty in flexibility should be eliminated for gender convergence

## **Where do the gender differences in demand for flexibility come from?**

- ▶ Job characteristics are ostensibly equal between men and women
- ▶ What encourages women to choose flexible jobs?
  - Responsibility in home production (**Social Norms**)

# Japan as an Ideal Laboratory

In Japanese statistics, a definition is used: *Regular* and *Non-regular* jobs

- ▶ Based on “how their occupations are classified in the company”
- ▶ There is no precise definition, but *typically*,

|               | <b>Regular</b> | <b>Non-regular</b>  |
|---------------|----------------|---------------------|
| Contract Type | Permanent      | Temporary           |
| Hours (week)  | 40/40+         | Lower and Dispersed |
| Wage          | High           | Low                 |

- ▶ R and NR jobs correspond to Non-linear and Linear jobs of Goldin (2014)
- ▶ Clear trade-off between job flexibility and wage
- ▶ Social norms on gender roles are strong in Japan
  - Regional variations also exist (c.f., Abe (2013))

# Outline

## Document female employment in Japan

- ▶ **Regular** vs. **Non-regular** jobs
- ▶ Social norms on gender roles

## Build a structural model

- ▶ Choices on occupations, working hours, domestic labor hours
  - Occupations differ in how hours map into earnings (Non-linear vs. Linear)
- ▶ Utility costs associated with wives' higher earnings

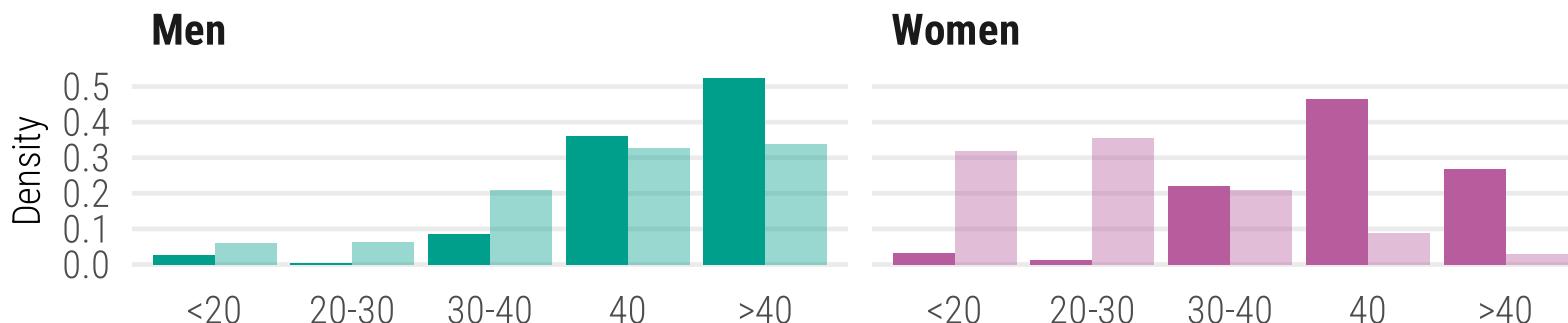
## Model explains

- ▶ Gender gaps in participation, occupation, working hours, and wages
- ▶ Regional variations in gender gaps
- ▶ Interaction effects of job inflexibility and social norms

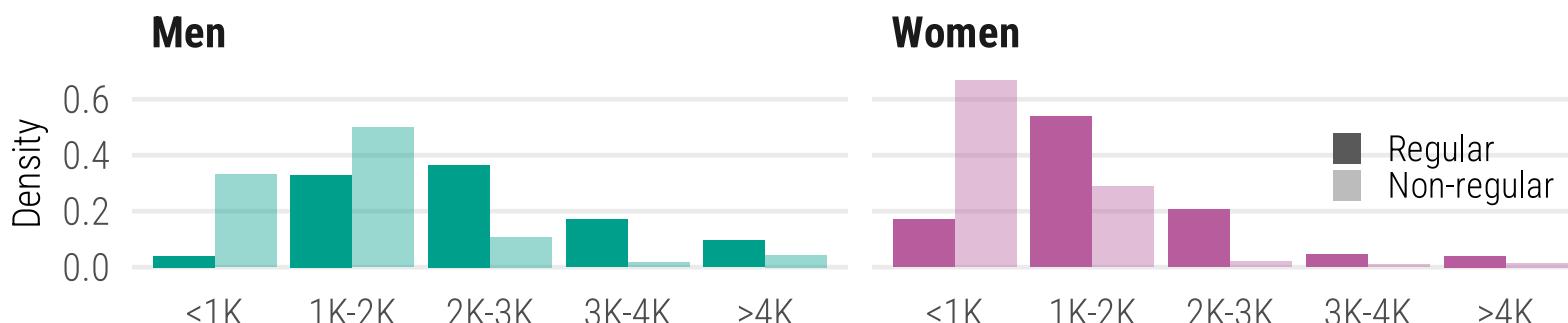
# Facts

# Data

## *Japan Panel Study of Employment Decisions (JPSED)*

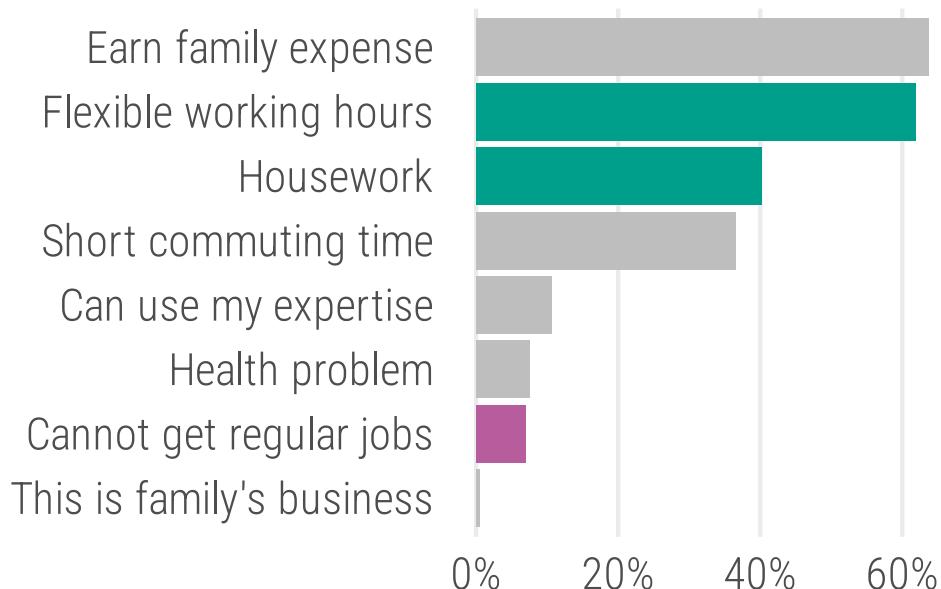

- ▶ 57,284 men and women older than 15 in Japan
- ▶ Panel data of individual workers since 2015
- ▶ Demographic data, employment status, and information on working conditions

## **Sample**

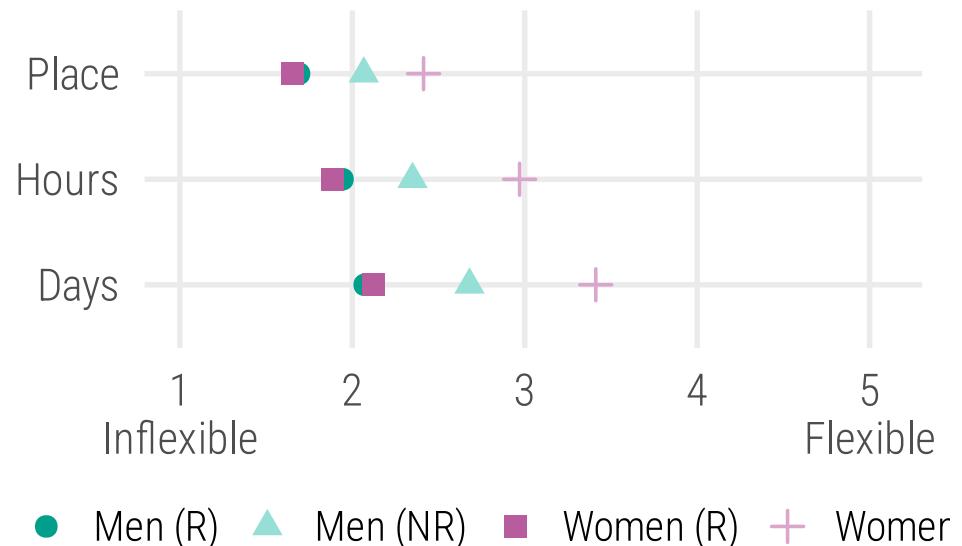

- ▶ Married people aged 25-59
- ▶ Employed either in regular or non-regular jobs
- ▶ Sample period from 2016 to 2019 (before COVID-19)

# Regular and Non-regular Jobs

## Weekly Working Hours

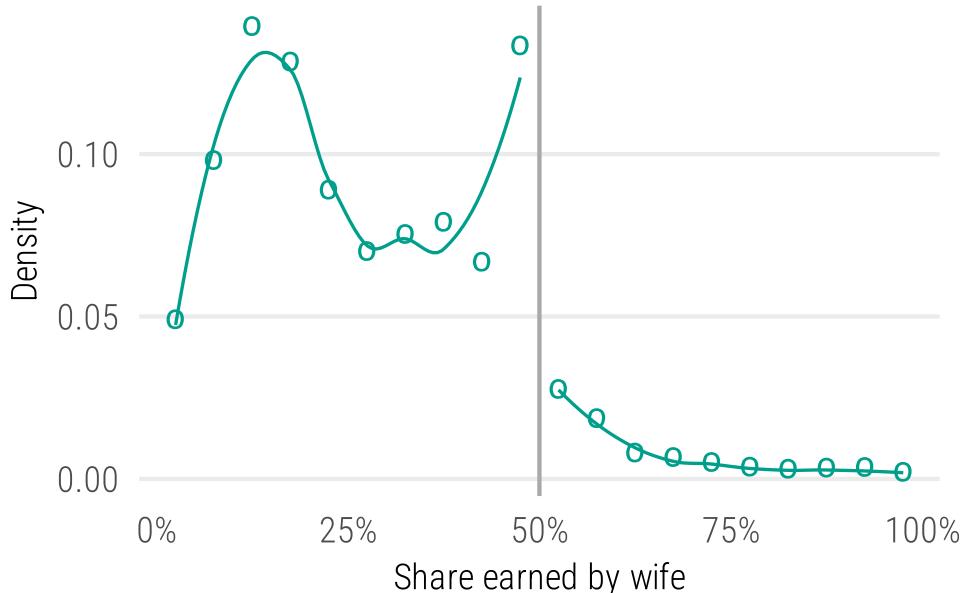



## Hourly Wage (JPY)

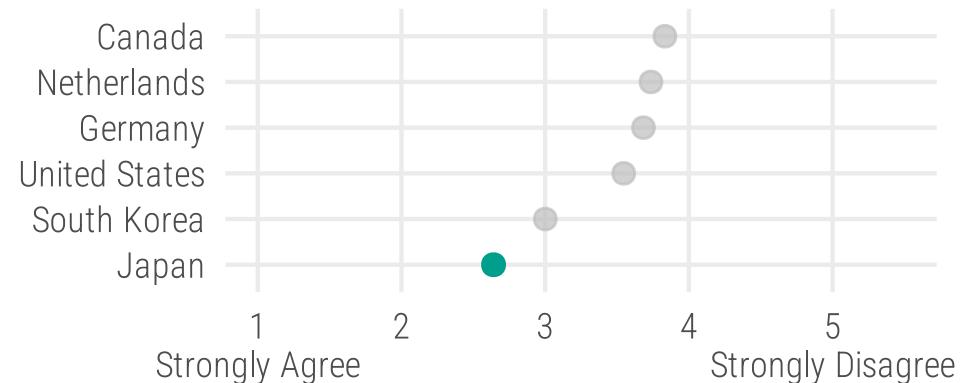



# Trade-off between Wage and Flexibility

## Reasons for Non-regular Jobs, Women




## Flexibility of Jobs




- ▶ Flexibility is the main reason for women choosing non-regular jobs
- ▶ Non-regular jobs are more flexible than regular jobs

# Social Norms



**If a woman earns more money than her husband, it's almost certain to cause problems.**



Data: World Value Survey Wave 7 (2017-2022).

- ▶ Similar to Bertrand, Kamenica, and Pan (2015)
  - A gap in the density of the wife's share of earnings at 50%
  - Interpreted as the existence of social norms
- ▶ Japan has one of the strongest social norms against wives' higher earnings

# Takeaways for the Model

## **Social norms** on wives' relative earnings

- ▶ Existence of utility costs when wives earn more than husbands
- ▶ Flip side of female responsibility in home production
- ▶ Origin of gender different demands for job flexibility

## **Job inflexibility** in regular jobs

- ▶ Trade-off between wage and flexibility
- ▶ Women choose non-regular jobs to accommodate domestic labor responsibilities

*“Social norms create gender gaps and job inflexibility amplifies them”*

# Model

# Settings

- ▶ Economy consists of married couples (male  $g = m$  and female  $g = f$ )
- ▶ A couple is endowed with
  - productivities  $\log(a_m, a_f) \sim \mathcal{N}(\mu, \Sigma)$
  - joint domestic labor requirements  $D \sim Beta(\alpha, \beta)$
- ▶ Couple's decisions have two layers:
  1. Occupational choices  $j_g \in \{R, NR\}$  or not to work  $j_g = NW$
  2. Working hours  $h_g$  and domestic labor  $d_g$  and consumption  $c_g$

## Utility Function

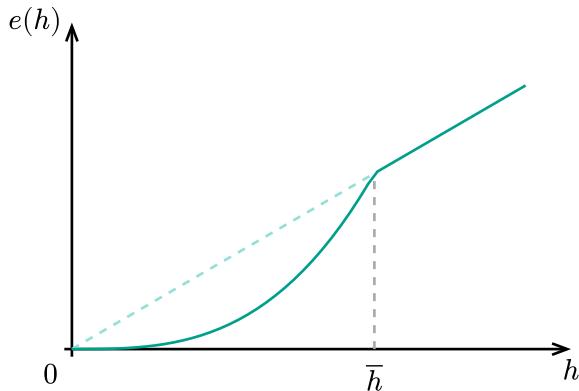
$$u(c, h + d) = \log c - \phi \frac{(h + d)^{1+\gamma}}{1 + \gamma}$$

# Settings

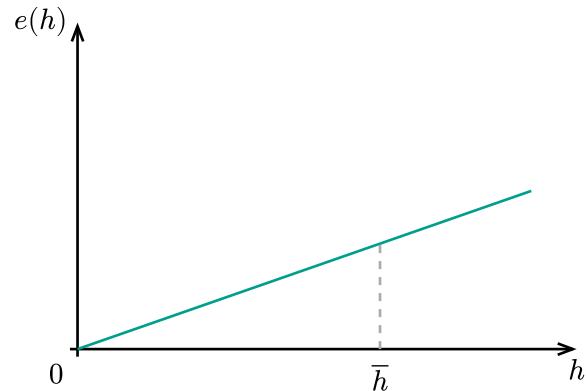
## Productivity

$$\log\begin{pmatrix} \alpha_m \\ \alpha_f \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \rho\sigma^2 \\ \cdot & \sigma^2 \end{pmatrix}\right).$$

- ▶ No gender differences in productivity
  - All the gender gaps emerge from the model structure
- ▶  $\rho > 0$  suggests positive assortative matching


## Home Requirements

$$(d_m^\xi + d_f^\xi)^{\frac{1}{\xi}} = D \sim Beta(\alpha, \beta).$$


- ▶ No gender differences in home production
- ▶  $\xi > 0$  suggests domestic labor is substitutable between spouses

# Convex Wage Schedule

## Regular Jobs



## Non-Regular Jobs



$$e(h, a, j = R) = \begin{cases} ah^{1+\theta} & \text{if } h \leq \bar{h} \\ a\bar{h}^\theta h & \text{if } h > \bar{h} \end{cases}$$

$$e(h, a, j = NR) = \psi a \bar{h}^\theta h$$

- ▶ Reducing working hours in regular jobs is costly
- ▶  $\psi$ : Wage penalty in non-regular jobs

# Household Decisions

## *Stage 1: Occupational Choices*

### Discrete Choice

$$(j_m, j_f) = \arg \max_{j_m, j_f} U^{j_m, j_f} + \varepsilon^{j_m, j_f}$$

- ▶  $U^{j_m, j_f}$ : Utility from occupational choices of  $(j_m, j_f)$
- ▶  $\varepsilon^{j_m, j_f} \sim \text{Type-I } (\eta)$ : Idiosyncratic shock

### Minimum Working Hours

To prevent trivial solutions (e.g.,  $h_g = 0$  for  $j_g = R$ ), I impose minimum working hours:

- ▶  $\underline{h}_R$ : Set to 20 hours per week for regular jobs
- ▶  $\underline{h}_{NR}$ : Set to 10 hours per week for non-regular jobs

# Household Decisions

## *Stage 2: Household Allocations*

$$U^{j_m, j_f} = \max_{c_m, c_f, h_m, h_f, d_m, d_f} u(c_m, h_m + d_m) + u(c_f, h_f + d_f) - \delta \cdot \mathbb{1}\{e_f > e_m\},$$

subject to

$$c_m + c_f = e(h_m, a_m, j_m) + e(h_f, a_f, j_f),$$

$$D = (d_m^\xi + d_f^\xi)^{\frac{1}{\xi}}.$$

- ▶  $\delta$ : Utility costs when wife's earnings exceed husband's (*Breadwinner Norm*)

# Model Recaps

## Married couples decide

- ▶ Occupations  $(j_m, j_f) \in \{R, NR, NW\}^2$
- ▶ Working hours  $(h_m, h_f)$ , domestic labor  $(d_m, d_f)$ , consumption  $(c_m, c_f)$

## Regular vs. Non-Regular Jobs

- ▶ Regular jobs have a convex wage schedule. High wages and long hours
- ▶ Non-regular jobs have a linear wage schedule. Low wages and flexible hours

## Gender gaps come from

- ▶ Social norms on wives' relative earnings  $\delta$
- ▶ No other structural asymmetries

# Estimation

# Calibration Strategy

## Exogenous Parameters

- ▶  $\gamma = 3$ : Frisch elasticity =  $\frac{1}{3}$  (Erosa et al. 2022)
- ▶  $\xi = 0.67$ : Intra-household ES of domestic labor = 3 (Knowles 2013)
- ▶  $\bar{h} = 40/(16 \times 7)$ : 40 hours per week

## Endogenous Parameters

$$\min_{\Pi} \sum_i \left[ \frac{\text{Data}_i - M_i(\Pi)}{\text{Data}_i} \right]^2.$$

$$\Pi = \left( \underbrace{\theta, \psi}_{\text{production}}, \underbrace{\eta}_{\text{shock}}, \underbrace{\phi}_{\text{preference}}, \underbrace{\sigma, \rho}_{\text{productivity}}, \underbrace{\alpha, \beta}_{\text{domestic labor}}, \underbrace{\delta}_{\text{social norm}} \right).$$

# Estimated Parameters

| Parameter | Value | Target                                              | Data | Model |
|-----------|-------|-----------------------------------------------------|------|-------|
| $\theta$  | 2.62  | Share of $j_m = R$                                  | 0.90 | 0.87  |
| $\eta$    | 0.17  | Share of $j_m = NR$                                 | 0.09 | 0.09  |
| $\psi$    | 0.59  | $\frac{\log w_{m,R} - \log w_{m,NR}}{\log w_{m,R}}$ | 0.64 | 0.68  |
| $\phi$    | 12.00 | $h_{m,R}$                                           | 0.40 | 0.40  |
| $\sigma$  | 0.64  | $sd(\log w_{m,R})$                                  | 0.62 | 0.63  |
| $\rho$    | 0.53  | $\text{Corr}(\log e_{m,R}, \log e_{f,R})$           | 0.21 | 0.21  |
| $\alpha$  | 0.08  | $d_{f,R}$                                           | 0.22 | 0.22  |
| $\beta$   | 0.43  | $sd(d_{f,R})$                                       | 0.14 | 0.14  |
| $\delta$  | 0.79  | Share of $e_f > e_m$                                | 0.07 | 0.07  |

- ▶ Estimated parameters closely match the data moments

# Estimated Parameters

| Parameter | Value       | Target                                              | Data | Model |
|-----------|-------------|-----------------------------------------------------|------|-------|
| $\theta$  | <b>2.62</b> | Share of $j_m = R$                                  | 0.90 | 0.87  |
| $\eta$    | 0.17        | Share of $j_m = NR$                                 | 0.09 | 0.09  |
| $\psi$    | 0.59        | $\frac{\log w_{m,R} - \log w_{m,NR}}{\log w_{m,R}}$ | 0.64 | 0.68  |
| $\phi$    | 12.00       | $h_{m,R}$                                           | 0.40 | 0.40  |
| $\sigma$  | 0.64        | $sd(\log w_{m,R})$                                  | 0.62 | 0.63  |
| $\rho$    | 0.53        | $\text{Corr}(\log e_{m,R}, \log e_{f,R})$           | 0.21 | 0.21  |
| $\alpha$  | 0.08        | $d_{f,R}$                                           | 0.22 | 0.22  |
| $\beta$   | 0.43        | $sd(d_{f,R})$                                       | 0.14 | 0.14  |
| $\delta$  | 0.79        | Share of $e_f > e_m$                                | 0.07 | 0.07  |

- ▶ Estimated parameters closely match the data moments
- ▶ High convexity in regular jobs

# Estimated Parameters

| Parameter | Value       | Target                                              | Data | Model |
|-----------|-------------|-----------------------------------------------------|------|-------|
| $\theta$  | 2.62        | Share of $j_m = R$                                  | 0.90 | 0.87  |
| $\eta$    | 0.17        | Share of $j_m = NR$                                 | 0.09 | 0.09  |
| $\psi$    | <b>0.59</b> | $\frac{\log w_{m,R} - \log w_{m,NR}}{\log w_{m,R}}$ | 0.64 | 0.68  |
| $\phi$    | 12.00       | $h_{m,R}$                                           | 0.40 | 0.40  |
| $\sigma$  | 0.64        | $sd(\log w_{m,R})$                                  | 0.62 | 0.63  |
| $\rho$    | 0.53        | $\text{Corr}(\log e_{m,R}, \log e_{f,R})$           | 0.21 | 0.21  |
| $\alpha$  | 0.08        | $d_{f,R}$                                           | 0.22 | 0.22  |
| $\beta$   | 0.43        | $sd(d_{f,R})$                                       | 0.14 | 0.14  |
| $\delta$  | 0.79        | Share of $e_f > e_m$                                | 0.07 | 0.07  |

- ▶ Estimated parameters closely match the data moments
- ▶ High convexity in regular jobs
- ▶ Wage penalty in non-regular jobs

# Estimated Parameters

| Parameter | Value       | Target                                              | Data | Model |
|-----------|-------------|-----------------------------------------------------|------|-------|
| $\theta$  | 2.62        | Share of $j_m = R$                                  | 0.90 | 0.87  |
| $\eta$    | 0.17        | Share of $j_m = NR$                                 | 0.09 | 0.09  |
| $\psi$    | 0.59        | $\frac{\log w_{m,R} - \log w_{m,NR}}{\log w_{m,R}}$ | 0.64 | 0.68  |
| $\phi$    | 12.00       | $h_{m,R}$                                           | 0.40 | 0.40  |
| $\sigma$  | 0.64        | $sd(\log w_{m,R})$                                  | 0.62 | 0.63  |
| $\rho$    | <b>0.53</b> | $\text{Corr}(\log e_{m,R}, \log e_{f,R})$           | 0.21 | 0.21  |
| $\alpha$  | 0.08        | $d_{f,R}$                                           | 0.22 | 0.22  |
| $\beta$   | 0.43        | $sd(d_{f,R})$                                       | 0.14 | 0.14  |
| $\delta$  | 0.79        | Share of $e_f > e_m$                                | 0.07 | 0.07  |

- ▶ Estimated parameters closely match the data moments
- ▶ High convexity in regular jobs
- ▶ Wage penalty in non-regular jobs
- ▶ Positive assortative matching

# Untargeted Moments

## *Occupational Choices*

### Data

|           |          | Wife      |           |  |
|-----------|----------|-----------|-----------|--|
| Husband   | <i>R</i> | <i>NR</i> | <i>NW</i> |  |
| <i>R</i>  | 0.35     | 0.38      | 0.17      |  |
| <i>NR</i> | 0.01     | 0.07      | 0.01      |  |
| <i>NW</i> | 0.01     | 0.01      | 0.00      |  |

### Model

|           |          | Wife      |           |  |
|-----------|----------|-----------|-----------|--|
| Husband   | <i>R</i> | <i>NR</i> | <i>NW</i> |  |
| <i>R</i>  | 0.17     | 0.33      | 0.37      |  |
| <i>NR</i> | 0.04     | 0.04      | 0.02      |  |
| <i>NW</i> | 0.04     | 0.00      | 0.00      |  |

- ▶ Wives' occupational choices are untargeted but closely match the data

# Untargeted Moments

## *Allocation of Working Hours*

| Husband     | Wife        | Data    |      | Model   |      |
|-------------|-------------|---------|------|---------|------|
|             |             | Husband | Wife | Husband | Wife |
| Regular     | Regular     | 44.4    | 39.7 | 45.8    | 34.6 |
| Regular     | Non-regular | 45.4    | 23.5 | 42.3    | 14.1 |
| Non-regular | Regular     | 37.0    | 39.7 | 23.1    | 39.9 |
| Non-regular | Non-regular | 39.8    | 25.5 | 36.5    | 19.1 |

- ▶ Replicates characteristic patterns of working hours
  - Husbands work longer than wives
  - Regular workers work longer than non-regular workers

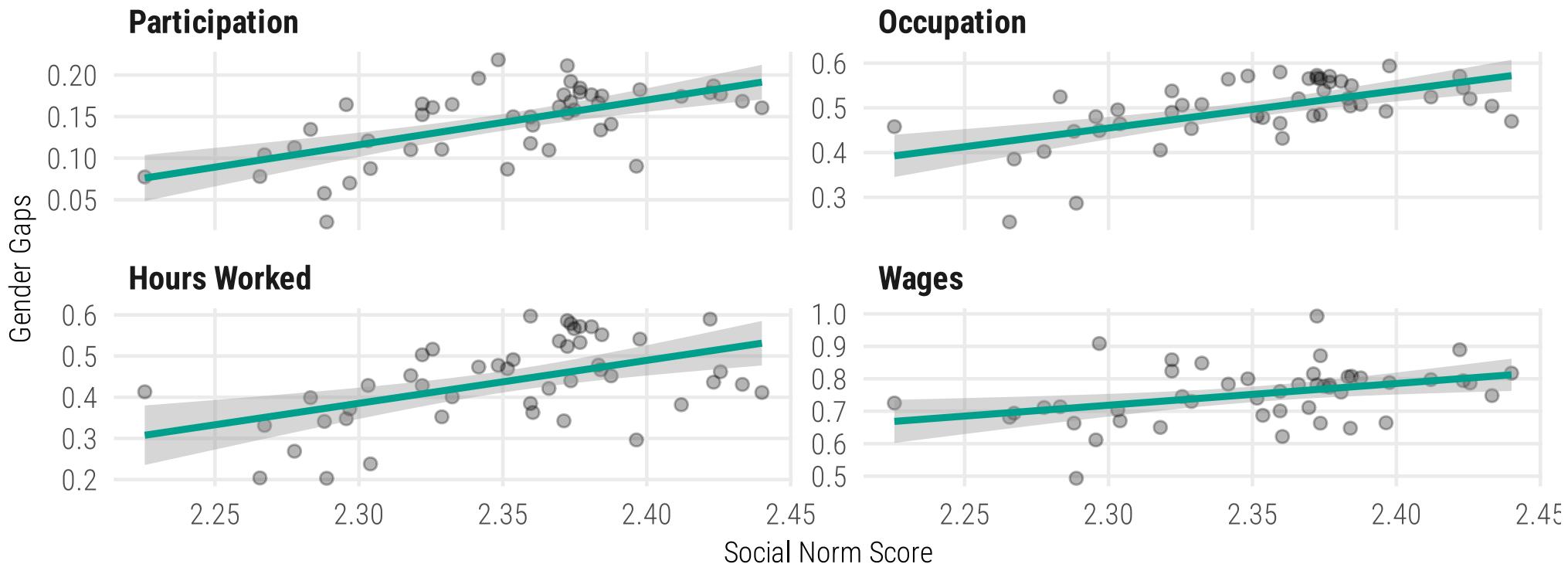
# Gender Gaps

|               | Data | Model | Model / Data |
|---------------|------|-------|--------------|
| Participation | 0.16 | 0.34  | 208%         |
| Occupation    | 0.53 | 0.62  | 118%         |
| Labor Hours   | 0.49 | 0.77  | 158%         |
| Wage          | 0.76 | 0.37  | 48%          |

- ▶ Four measurements of the gender gaps
  - *Participation*: diff. in labor force participation rates
  - *Occupation*: diff. in the share of regular jobs
  - *Labor Hours*: diff. in log working hours conditioned by working
  - *Wage*: diff. in log wages conditioned by working
- ▶ Model replicates all types of gender gaps **without**
  - Targeting them in the estimation
  - Assuming exogenous gender differences in productivity

# Regional Variations in Social Norms

# Social Norms and Gender Gaps


## Motivation

- ▶ Kleven et al. (2019) shows the correlation between social norms on gender roles and the size of child penalties across countries
- ▶ Abe (2013) suggests regional variations in social norms in Japan

## Social Norm Score

- ▶ “Survey on Awareness of Women’s Participation and Advancement in Regional Areas” (SAWPARA) conducted in 2015
- ▶ 4-point Likert scale on attitudes toward gender roles in 47 prefectures
  - Higher scores indicate more traditional views on gender roles

# Social Norms and Gender Gaps



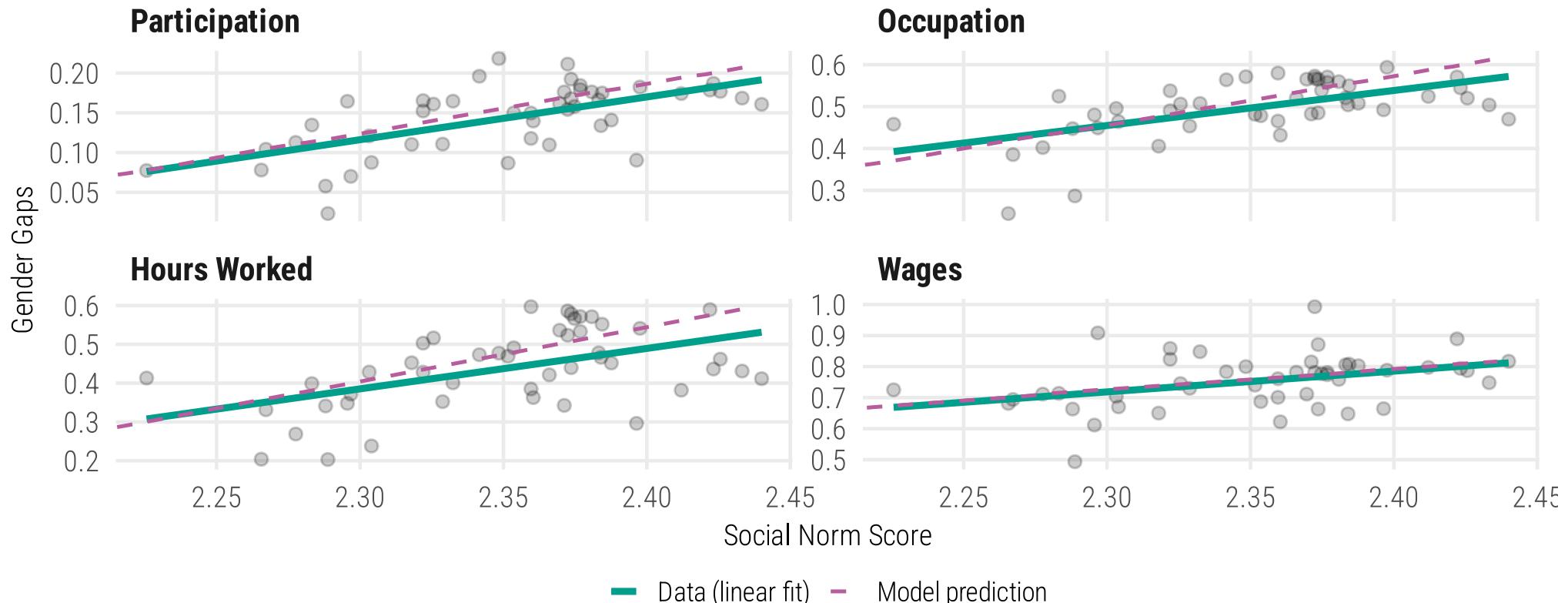
Data: SAWPARA (2015) and JPSED (2016-2019).

- ▶ Clear correlation between social norms and gender gaps
- ▶ Can the model replicate the relationship?

# Model Prediction

Assume the four gender gaps measurements  $\mathbf{g}_p = (g_{1,p}, g_{2,p}, g_{3,p}, g_{4,p})$  are

$$\mathbf{g}_p = G(\delta_p; X) + \mathbf{g}_0 + \Xi_p.$$


- ▶  $G(\delta_p; X)$ : Model-predicted gaps given  $\delta_p$  and other parameters  $X$
- ▶  $\mathbf{g}_0 := \mathbf{g}_{\text{JPN}} - G(\hat{\delta}; \hat{X})$ : Baseline gaps not explained by the model
- ▶  $\Xi_p$ : Idiosyncratic error term

The social norms score is mapped into  $\delta_p$  by the two steps:

1.  $f(\delta_p; X)$ : Model-predicted share of wives earning more than husbands
2. Linear mapping between  $f(\delta_p; X)$  and the social norms score  $s_p$  ► data

Varying  $\delta$ , we obtain a model predicted relationships of  $(s_p(\delta), \mathbf{g}_p(\delta))$

# Model Prediction



- ▶ Model predictions closely match the data patterns
- ▶ Social norms  $\delta$  are a key determinant of regional variations in gender gaps

# Counterfactual Simulations

# Flexible Regular Jobs

$$e(a, h, j = R) = \begin{cases} 0 & \text{if } h < \underline{h}_R \\ a \bar{h}^\theta h & \text{if } h \geq \underline{h}_R \end{cases}$$

## Baseline

| Husband   | Wife     |           |           |
|-----------|----------|-----------|-----------|
|           | <i>R</i> | <i>NR</i> | <i>NW</i> |
| <i>R</i>  | 0.17     | 0.33      | 0.37      |
| <i>NR</i> | 0.04     | 0.04      | 0.02      |
| <i>NW</i> | 0.04     | 0.00      | 0.00      |

## Flexible Regular Jobs

| Husband   | Wife     |           |           |
|-----------|----------|-----------|-----------|
|           | <i>R</i> | <i>NR</i> | <i>NW</i> |
| <i>R</i>  | 0.40     | 0.23      | 0.25      |
| <i>NR</i> | 0.05     | 0.02      | 0.01      |
| <i>NW</i> | 0.03     | 0.00      | 0.00      |

- ▶ Increase in wives choosing regular jobs
- ▶ Consistent with job inflexibility as a main reason for non-regular jobs

# Flexible Regular Jobs

## Time Allocations

### Working Hours

|           |           | Baseline |      | Flexible |      |
|-----------|-----------|----------|------|----------|------|
| H         | W         | H        | W    | H        | W    |
| <i>R</i>  | <i>R</i>  | 45.8     | 34.6 | 37.6     | 24.0 |
| <i>R</i>  | <i>NR</i> | 42.3     | 14.1 | 40.7     | 16.0 |
| <i>NR</i> | <i>R</i>  | 23.1     | 39.9 | 31.1     | 29.9 |
| <i>NR</i> | <i>NR</i> | 36.5     | 19.1 | 38.0     | 19.5 |

### Domestic Labor Hours

|           |           | Baseline |      | Flexible |      |
|-----------|-----------|----------|------|----------|------|
| H         | W         | H        | W    | H        | W    |
| <i>R</i>  | <i>R</i>  | 19.0     | 25.6 | 26.6     | 36.5 |
| <i>R</i>  | <i>NR</i> | 23.7     | 46.4 | 24.1     | 43.6 |
| <i>NR</i> | <i>R</i>  | 38.4     | 23.9 | 32.1     | 32.1 |
| <i>NR</i> | <i>NR</i> | 27.9     | 41.7 | 26.0     | 40.3 |

- ▶ Wives can choose lower working hours
- ▶ Domestic labor hours do not change much (except for *NR* × *R* couples)

# Outsourcing of Housework

- ▶ Marketization of housework is a key determinant of Female Labor Supply  
→ Cortés and Pan (2019); Duval-Hernández, Fang, and Rachel Ngai (2023); Cortés and Tessada (2011)
- ▶ Limited availability in Japan

## Counterfactual simulations

$$c_m + c_f + pd = e_m(h_m, a_{m,j}, j_m) + e_f(h_f, a_{f,j}, j_f),$$

$$D = (d_m^\xi + d_f^\xi + d^\xi)^{\frac{1}{\xi}}.$$

- ▶  $d$ : Purchasable domestic labor hours.  $p$  is its price
- ▶ Assume  $p = \psi \bar{h}^\theta$  as the mean wage of non-regular jobs

# Outsourcing of Housework

## *Time Allocations*

### Working Hours

|           |           | Baseline |      | Outsourcing |      |
|-----------|-----------|----------|------|-------------|------|
| H         | W         | H        | W    | H           | W    |
| <i>R</i>  | <i>R</i>  | 45.8     | 34.6 | 55.1        | 41.4 |
| <i>R</i>  | <i>NR</i> | 42.3     | 14.1 | 54.3        | 25.6 |
| <i>NR</i> | <i>R</i>  | 23.1     | 39.9 | 32.0        | 50.3 |
| <i>NR</i> | <i>NR</i> | 36.5     | 19.1 | 48.8        | 29.7 |

### Domestic Labor Hours

|           |           | Baseline |      | Outsourcing |      |
|-----------|-----------|----------|------|-------------|------|
| H         | W         | H        | W    | H           | W    |
| <i>R</i>  | <i>R</i>  | 19.0     | 25.6 | 5.8         | 12.4 |
| <i>R</i>  | <i>NR</i> | 23.7     | 46.4 | 6.8         | 25.3 |
| <i>NR</i> | <i>R</i>  | 38.4     | 23.9 | 20.6        | 7.7  |
| <i>NR</i> | <i>NR</i> | 27.9     | 41.7 | 11.9        | 24.0 |

- ▶ Both husbands and wives increase market work hours
- ▶ Outsourcing largely eliminates the need for couples to work for domestic labor

# Outsourcing of Housework

## *Occupational Choices*

### Baseline

|           |          | Wife      |           |  |
|-----------|----------|-----------|-----------|--|
| Husband   | <i>R</i> | <i>NR</i> | <i>NW</i> |  |
| <i>R</i>  | 0.17     | 0.33      | 0.37      |  |
| <i>NR</i> | 0.04     | 0.04      | 0.02      |  |
| <i>NW</i> | 0.04     | 0.00      | 0.00      |  |

### Outsourcing

|           |          | Wife      |           |  |
|-----------|----------|-----------|-----------|--|
| Husband   | <i>R</i> | <i>NR</i> | <i>NW</i> |  |
| <i>R</i>  | 0.52     | 0.23      | 0.15      |  |
| <i>NR</i> | 0.04     | 0.01      | 0.00      |  |
| <i>NW</i> | 0.03     | 0.00      | 0.00      |  |

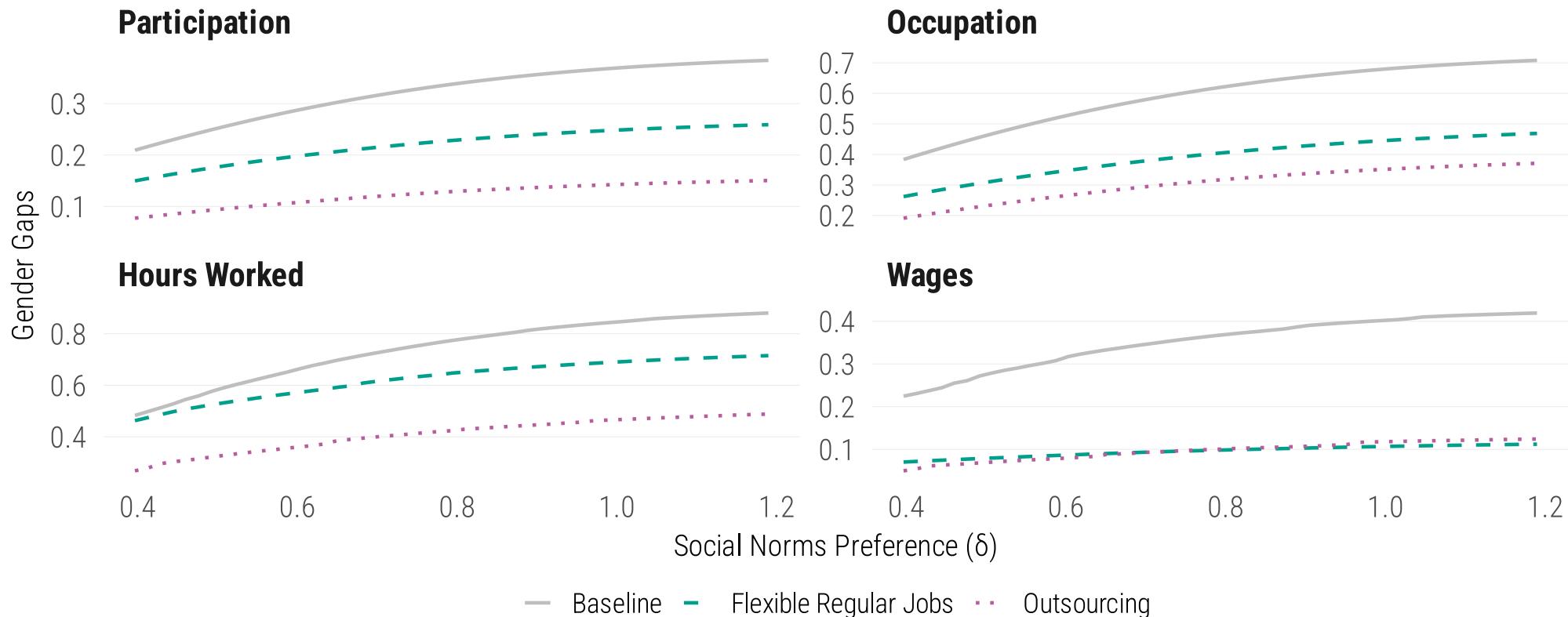
- ▶ Increase in wives choosing regular jobs
- ▶ Consistent with housework as a reason for choosing non-regular jobs

# Gender Gaps

|               | Baseline | Flexible | Outsourcing |
|---------------|----------|----------|-------------|
| Participation | 0.34     | 0.23     | 0.13        |
| Occupation    | 0.62     | 0.40     | 0.32        |
| Labor Hours   | 0.77     | 0.65     | 0.42        |
| Wage          | 0.37     | 0.10     | 0.10        |

# Gender Gaps

|                      | Baseline | Flexible    | Outsourcing |
|----------------------|----------|-------------|-------------|
| <b>Participation</b> | 0.34     | <b>0.23</b> | <b>0.13</b> |
| <b>Occupation</b>    | 0.62     | <b>0.40</b> | <b>0.32</b> |
| Labor Hours          | 0.77     | 0.65        | 0.42        |
| <b>Wage</b>          | 0.37     | <b>0.10</b> | <b>0.10</b> |


- ▶ Both flexible regular jobs and outsourcing significantly reduce gender gaps

# Gender Gaps

|                    | Baseline    | Flexible    | Outsourcing |
|--------------------|-------------|-------------|-------------|
| Participation      | 0.34        | 0.23        | 0.13        |
| Occupation         | 0.62        | 0.40        | 0.32        |
| <b>Labor Hours</b> | <b>0.77</b> | <b>0.65</b> | <b>0.42</b> |
| Wage               | 0.37        | 0.10        | 0.10        |

- ▶ Both flexible regular jobs and outsourcing significantly reduce gender gaps
  - Women can choose regular jobs more easily
- ▶ Outsourcing has more impact on the gap in working hours
  - Domestic labor burdens does not change by the flexibility of the jobs

# Interactive Effects of Job Flexibility and Social Norms



- ▶ Policies reduce gender gaps more effectively when social norms are stronger

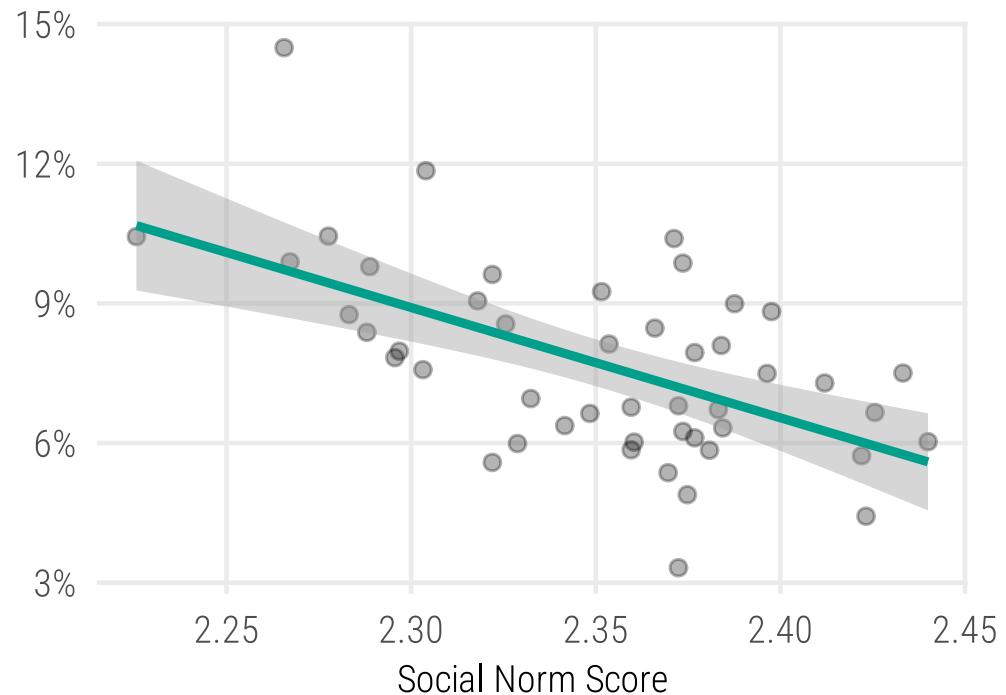
# Conclusion

## *Key Elements for Gender Convergence*

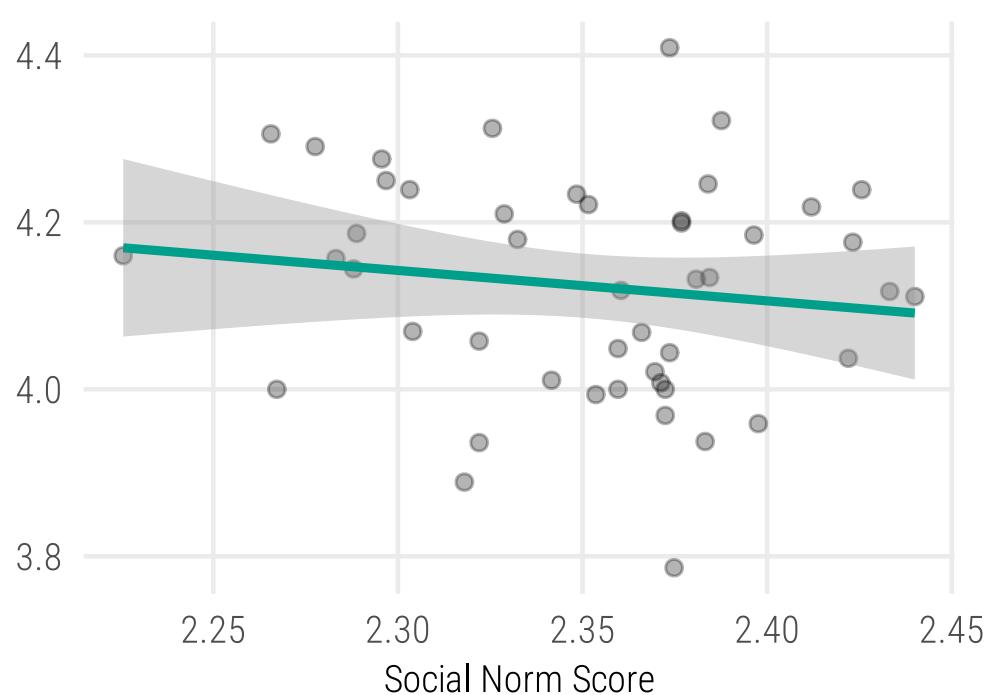
- ▶ **Job flexibility** trade-off: Regular vs Non-regular jobs
- ▶ **Social norms** on wives' relative earnings

## *Model Explains*

- ▶ Gender gaps in participation, occupation, working hours, and wages
- ▶ Regional variations in gender gaps
- ▶ Interaction effects of job inflexibility and social norms


## *Policy Implications*

- ▶ Enhancing job flexibility in regular jobs mitigates gender gaps
  - Gender roles in domestic labor remain a barrier (esp. working hours)
- ▶ Marketization of housework reduces all types of gender gaps
  - reduces domestic labor burdens directly


# Appendix

# Social Norms Score with Other Outcomes

## Wives Earning More than Husbands



## Flexibility in Working Time



► Back to main

## References

Abe, Yukiko. 2013. "Regional Variations in Labor Force Behavior of Women in Japan". *Japan and the World Economy* 28 (December):112–24. <https://doi.org/10.1016/j.japwor.2013.08.004>.

Bertrand, Marianne, Emir Kamenica, and Jessica Pan. 2015. "Gender Identity and Relative Income within Households". *The Quarterly Journal of Economics* 130 (2): 571–614. <https://doi.org/10.1093/qje/qjv001>.

Cortés, Patricia, and Jessica Pan. 2019. "When Time Binds: Substitutes for Household Production, Returns to Working Long Hours, And the Skilled Gender Wage Gap". *Journal of Labor Economics* 37 (2): 351–98. <https://doi.org/10.1086/700185>.

Cortés, Patricia, and José Tessada. 2011. "Low-Skilled Immigration and the Labor Supply of Highly Skilled Women". *American Economic Journal: Applied Economics* 3 (3): 88–123.

# References

Duval-Hernández, Robert, Lei Fang, and L. Rachel Ngai. 2023. "Taxes, Subsidies and Gender Gaps in Hours and Wages". *Economica* 90 (358): 373–408. <https://doi.org/10.1111/ecca.12466>.

Erosa, Andrés, Luisa Fuster, Gueorgui Kambourov, and Richard Rogerson. 2022. "Hours, Occupations, And Gender Differences in Labor Market Outcomes". *American Economic Journal: Macroeconomics* 14 (3): 543–90. <https://doi.org/10.1257/mac.20200318>.

Goldin, Claudia. 2014. "A Grand Gender Convergence: Its Last Chapter". *American Economic Review* 104 (4): 1091–1119. <https://doi.org/10.1257/aer.104.4.1091>.

Kleven, Henrik, Camille Landais, and Gabriel Leite-Mariante. 2025. "The Child Penalty Atlas". *Review of Economic Studies* 92 (5): 3174–3207. <https://doi.org/10.1093/restud/rdae104>.

## References

Kleven, Henrik, Camille Landais, and Jakob Egholt Søgaard. 2019. "Children and Gender Inequality: Evidence from Denmark". *American Economic Journal: Applied Economics* 11 (4): 181–209. <https://doi.org/10.1257/app.20180010>.

Kleven, Henrik, Camille Landais, Johanna Posch, Andreas Steinhauer, and Josef Zweimüller. 2019. "Child Penalties across Countries: Evidence and Explanations". *AEA Papers and Proceedings* 109 (May):122–26. <https://doi.org/10.1257/pandp.20191078>.

Knowles, John A. 2013. "Why Are Married Men Working So Much? An Aggregate Analysis of Intra-Household Bargaining and Labour Supply". *The Review of Economic Studies* 80 (3): 1055–85. <https://doi.org/10.1093/restud/rds043>.