Non-linear Wage

Erosa et al. (2022)

柳本和春 🗈

yanagimoto@econ.kobe-u.ac.jp

神戸大学

2026-01-05

労働供給の経済学

労働供給 (Labor Supply) といった時, 次の二つの要素がある.

- ▶ Extensive Margin: 労働市場に参加するかどうか
- ▶ Intensive Margin: 労働市場に参加した場合, 何時間働くか

Extensive Margin

- ▶ 労働参加率 (Labor Force Participation Rate) を指す場合が多い
- ▶ 女性の労働参加 (Female Labor Force Participation, FLFP) も重要

Intensive Margin

- ▶ (週あたり) 労働時間を指す場合が多い
- ▶ 労働参加を所与とした統計か,労働非参加を 0 として含むか (extensive margin)

労働供給の弾力性

労働供給の賃金に対する弾力性には主に以下の3つがある:

- 1. Marshallian 弾力性: 所得を一定とした下での労働供給の弾力性
- 2. Hicksian 弾力性: 効用のレベルを一定とした下での労働供給の弾力性
- 3. Frisch 弾力性: 限界効用を一定にした下での労働供給の弾力性

マクロ経済学で関心があるのは基本的に Frisch 弾力性:

- ▶ 動学モデルでは、各期の労働供給は将来の限界効用を所与として決定する
- ▶ そのため、景気循環や政策の影響を受ける労働供給の弾力性は Frisch 弾力性である

Frisch 弾力性

$$V(a) = \max_{c,h,a'} u(c,h) + \beta V(a')$$
 s.t. $c + a' = (1+r)a + wh$

 λ をラグランジュ乗数とした一階条件から $u_c(c,h)=\lambda, u_h(c,h)=-\lambda w$ より,

$$u_{cc}\frac{\partial c}{\partial w} + u_{ch}\frac{\partial h}{\partial w} = 0 \text{ and } u_{hc}\frac{\partial c}{\partial w} + u_{hh}\frac{\partial h}{\partial w} = -\lambda.$$

これを $\frac{\partial h}{\partial w}$ について解くと,

$$\frac{\partial h}{\partial w} = \frac{u_h}{u_{hh} - \frac{u_{ch}^2}{u_{cc}}} \frac{1}{w}.$$

Frisch 弾力性 $\eta \coloneqq \frac{\partial h}{\partial w} \frac{w}{h}$ より,

$$\eta = \frac{u_h}{h\left(u_{hh} - \frac{u_{ch}^2}{u_{cc}}\right)}.$$

Frisch 弾力性: マクロ vs ミクロ

マクロ経済学でよく用いられる (separable) な CRRA 効用関数を考えると,

$$u(c,h) = \frac{c^{1-\sigma}}{1-\sigma} - \alpha \frac{h^{1+\phi}}{1+\phi} \Rightarrow \eta = \frac{1}{\phi}.$$

Chetty et al. (2011) はメタ分析を行い, Frisch 弾力性の平均的な推定値を報告した.

- ▶ ミクロ分析 (擬似実験, quasi-experiment): 0.82
- ▶ マクロモデル: 2.84
 - → RBC モデルなどで, 雇用は実質賃金よりも volatile

Puzzle:「マクロモデルの Frisch 弾力性はミクロモデルよりもかなり大きい」

- ▶ Frisch 弾力性の推定値に関しては, 今も議論が続いている
 - → 例: Erosa, Fuster, and Kambourov (2016)

労働供給と家族経済学

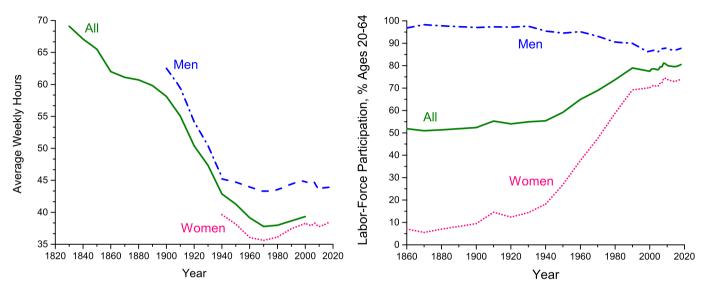


FIGURE 2.1 Average weekly hours and labor-force participation in the United States.

Figure 1: Greenwood, Guner, and Marto (2023)

- ▶ 1940 年以降, 男女別の労働時間はあまり変化していない
- ▶ 過去 150 年で女性の労働参加率は大きく上昇した
- ▶ 通常のマクロ経済学が仮定する単一 (unitary) な家計のモデルでは説明できない

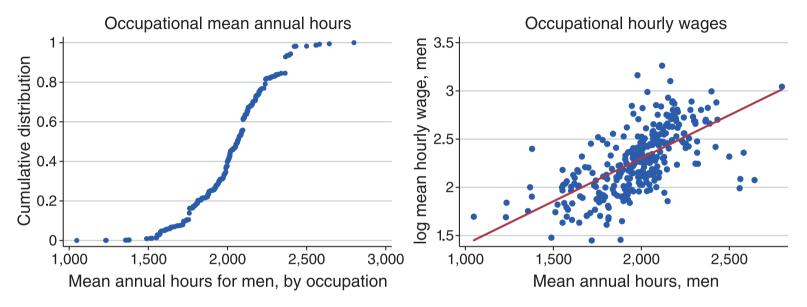
Erosa et al. (2022)

Linear vs. Non-linear Jobs

Goldin (2014) は男女平等の "Last Chapter" として, 職種による賃金構造の違いを指摘した **Linear Jobs** (薬剤師など)

▶ 収入が労働時間に比例する. 標準的な経済モデルでの仮定 e=wh

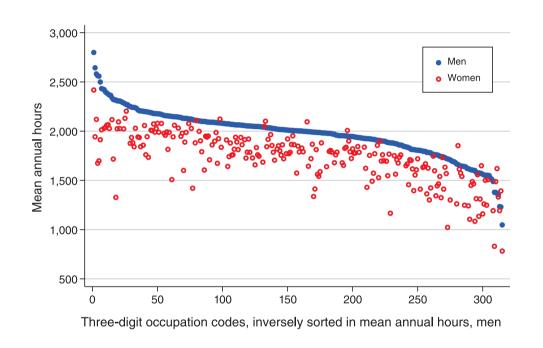
Non-linear Jobs (MBA, 弁護士など)

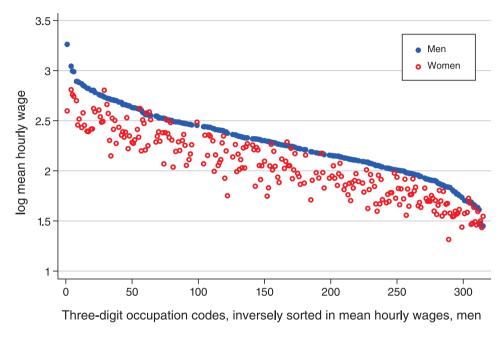

▶ 労働時間が長いほど時給が高くなる (凸的, convex wage profile)

Erosa et al. (2022) はこれに着想を得て, 男女間の職種の違いと賃金格差を分析した

- ▶ Non-linear jobs は長時間労働を要求されるため, 家事・育児の負担が大きい女性に不利
- ▶ 女性は賃金が比較的低い linear jobs を選択しやすい

Stylized Facts


職業と労働時間



- ▶ データ: Current Population Survey (CPS) 1986-1995, United States
- ▶ 3 桁の職業分類ごとに平均値を算出
- ▶ 職業ごとに平均労働時間にバリエーション
- ▶ 労働時間と**時給**に正の相関 ⇒ Non-linear jobs

Stylized Facts

職業と労働時間のジェンダーギャップ

- ▶ 男性の平均順に職業を並べ,同じ職業の女性の値をプロット
- ▶ 平均労働時間,時給ともに女性の方が低い

Stylized Facts

Linar vs. Non-linear Jobs

Table 1—Data Moments: CPS (1986–1995)

	Employment share	log mean hours	log mean wages	Std. log hours	Std. log wages
Panel A. Men					
Nonlinear	0.60	7.73	2.59	0.22	0.45
Linear	0.40	7.57	2.22	0.32	0.47
Aggregate	1.00	7.67	2.46	0.26	0.46
Panel B. Women					
Nonlinear	0.37	7.50	2.25	0.39	0.48
Linear	0.63	7.35	1.89	0.50	0.47
Aggregate	1.00	7.40	2.04	0.46	0.48

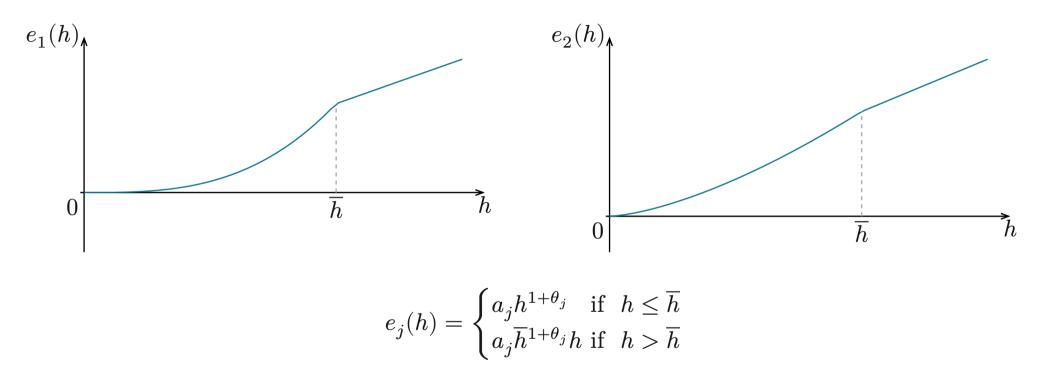
- ▶ 3 桁の職業分類のうち, 平均労働時間が中央値より大きいものを Non-linear jobs と定義
- ▶ Non-linear jobs の方が賃金も高い

モデル

設定

- ト 静的なカップルの意思決定モデル. 男性 g=m, 女性 $\S g=f \S$
- ▶ カップルは職業 $j_m, j_f \in \{1,2\}$ と労働時間 h_m, h_f を選択
- ▶ 男女の家事労働時間 T_m, T_f は 外生的 に与えられる $(T_m < T_f)$
- ト カップルごとに職業に応じた能力 $a_{m1}, a_{m2}, a_{f1}, a_{f2}$ と労働への選好 ϕ_m, ϕ_f が与えられる

家計の問題


$$\max_{c_m,c_f,h_m,h_f,j_m,j_f} u_m(c_m,h_m) + u_f\big(c_f,h_f\big) \quad \text{subject to} \quad c_m + c_f \leq e_{j_m}(h_m) + e_{j_f}\big(h_f\big)$$

ここで, $e_i(h)$ は職業ごとの収入関数であり, 効用関数は

$$u_g (c_g, h_g) = \log c_g - \phi_g \frac{\left(T_g + h_g\right)^{1+\gamma}}{1+\gamma}.$$

モデル

Convex Wage Profile

ここでは $\theta_1 > \theta_2 > 0$ を仮定 (Non-linear jobs の方が凸的)

カリブレーション

Exogenous Parameters

- $m{ heta}_1=0.6, heta_2=0.2$: Literature. Appendix B にて詳細な議論
- $\bar{h} = 2500$
 - → Bick, Blandin, and Rogerson (2022) は, 週 50 時間以上働く人の時給が低いことを指摘
 - → 年50週労働と仮定
- $ightharpoonup T_m = 0, T_f = 500$: Aguiar and Hurst (2007) の 1993 年のデータに基づく
- $\gamma = 3$: Literature. Frisch 弾力性 $\eta = 1/3$

Ability

$$\begin{split} \log \begin{pmatrix} a_{m1} \\ a_{f1} \\ a_{m2} \\ a_{f2} \end{pmatrix} &\sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \mu_{a_2} \\ \mu_{a_2} \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \rho_{a_m,a_f} \sigma_1^2 & \rho_{a_1,a_2} \sigma_1 \sigma_2 & 0 \\ & & \sigma_1^2 & 0 & \rho_{a_1,a_2} \sigma_1 \sigma_2 \\ & & & & \sigma_2^2 & \rho_{a_m,a_f} \sigma_2^2 \\ & & & & & & & \sigma_2^2 \end{pmatrix} \end{pmatrix} \\ \log \begin{pmatrix} \phi_m \\ \phi_f \end{pmatrix} &\sim \mathcal{N} \begin{pmatrix} \begin{pmatrix} \mu_{\phi} \\ \mu_{\phi} \end{pmatrix}, \begin{pmatrix} \sigma_{\phi}^2 & \rho_{\phi} \sigma_{\phi}^2 \\ & & & & & & & \\ & & & & & & & \\ \end{pmatrix} \end{split}$$

カリブレーション

Simulated Method of Moments (SMM)

TABLE 2—CALIBRATION OF BASELINE ECONOMY

Parameter	Value	Target	Data	Model
μ_{a_2}	-0.1758	E_m^{NL}	0.60	0.61
$\mu_{a_2} \ \sigma_{a_1}^2$	0.3290	$sd(\ln w_{m,NL})$	0.45	0.49
$\sigma_{a_2}^2$	0.1877	$sd(\ln w_{m,L})$	0.47	0.42
μ_{ϕ}	0.4589	$\ln \bar{h}_m$	7.67	7.67
σ_ϕ^2	0.9429	$sd(\ln h_m)$	0.26	0.26
$ ho_{a_1,a_2}$	0.3114	$\ln \bar{w}_{m,NL} - \ln \bar{w}_{m,L}$	0.37	0.36
$ ho_{a_m,a_f}$	0.6886	gender corr. of log wages	0.43	0.43
$ ho_{\phi_{m},\phi_{f}}$	0.5056	gender corr. of log hours	0.02	0.02

Note: The baseline economy features $\theta_1=0.6,\,\theta_2=0.2,\,\bar{h}=2,500,\,T_m=0,T_f=500,$ and $\gamma=3.$

- ▶ 男性側のモーメントで推定. ジェンダーギャップはモデルからの含意
- ▶ 男女で能力や選好の差はないと仮定. ジェンダーギャップは $T_m < T_f$ によって生じる

Untargeted Moments

TABLE 3—GENDER GAPS, BASELINE MODEL

Gender gap	Data	Model
Panel A. Aggregate Econor	my	
Occupation	0.24	0.09
Hours	0.27	0.29
Wages	0.42	0.12
Panel B. By Occupation		
Hours NL	0.23	0.22
Wages NL	0.34	0.082
Hours L	0.23	0.35
Wages L	0.35	0.103

- ▶ Occupation は NL の割合の男女差. Hours, Wages は対数値の男女差
- ▶ 多くの割合をモデルが再現

まとめ

労働供給の経済学

- ▶ Intensive margin と extensive margin
- ▶ Frisch 弾力性のマクロ vs ミクロの違い
- ▶ 古典的な unitary モデルの限界 ⇒ 家庭内 (夫婦) の意思決定モデル

Erosa et al. (2022)

- ▶ Goldin (2014) は職業ごとの賃金構造の違いを指摘
 - → Nonlinear な職業は長時間労働の代わりに高賃金
- ▶ 男女の職業選択に Nonlinear vs Linear jobs の違いがある
- ▶ 家事負担の男女差が職業選択の男女差をもたらし,賃金格差の一因となっている

参考文献

- Aguiar, Mark, and Erik Hurst. 2007. "Life-Cycle Prices and Production". American Economic Review 97 (5): 1533–59. https://doi.org/10.1257/aer.97.5.1533.
- Bick, Alexander, Adam Blandin, and Richard Rogerson. 2022. "Hours and Wages". The Quarterly Journal of Economics 137 (3): 1901–62. https://doi.org/10.1093/qje/qjac005.
- Chetty, Raj, Adam Guren, Day Manoli, and Andrea Weber. 2011. "Are Micro and Macro Labor Supply Elasticities Consistent? A Review of Evidence on the Intensive and Extensive Margins". American Economic Review 101 (3): 471–75. https://doi.org/10.1257/aer.101.3.471.
- Erosa, Andrés, Luisa Fuster, and Gueorgui Kambourov. 2016. "Towards a Micro-Founded Theory of Aggregate Labour Supply". The Review of Economic Studies 83 (3): 1001–39. https://doi.org/10.1093/restud/rdw010.
- Erosa, Andrés, Luisa Fuster, Gueorgui Kambourov, and Richard Rogerson. 2022. "Hours, Occupations, And Gender Differences in Labor Market Outcomes". American Economic Journal: Macroeconomics 14 (3): 543–90. https://doi.org/10.1257/mac.20200318.

参考文献

Goldin, Claudia. 2014. "A Grand Gender Convergence: Its Last Chapter". American Economic Review 104 (4): 1091–1119. https://doi.org/10.1257/aer.104.4.1091.

Greenwood, Jeremy, Nezih Guner, and Ricardo Marto. 2023. "The Great Transition: Kuznets Facts for Family-Economists". Edited by Shelly Lundberg and Alessandra Voena. Handbook of the Economics of the Family. Handbook of the Economics of the Family, Volume 1. North-Holland. https://doi.org/10.1016/bs.hefam.2023.01.006.