Search and Matching II

Greenwood et al. (2016)

柳本和春 💿

yanagimoto@econ.kobe-u.ac.jp

神戸大学

2025-11-06

結婚の経済学

サーチモデル (Search and Matching)

- 1. Greenwood and Guner (2009)
 - ▶ 基本的な結婚のサーチモデル
 - ▶ ジェンダーのない代表的エージェント
- 2. Greenwood et al. (2016)
 - ▶ Heterogeneity (教育,能力) とジェンダー (男女) を導入して拡張
 - ▶ 同類婚傾向 (Assortative Mating) や世帯所得格差の拡大も説明

摩擦のない結婚市場 (Frictionless Marriage Market)

- 1. Gayle and Shephard (2019)
- 2. Reynoso (2024)

Greenwood et al. (2016)

結婚の減少

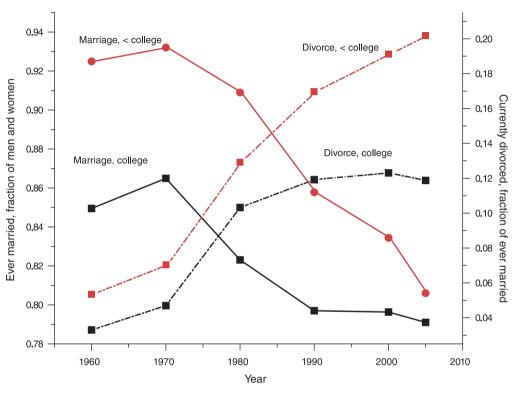


FIGURE 1. MARRIAGE AND DIVORCE BY EDUCATION

- ▶ 有配偶率は低下し,離婚率は上昇
- ▶ 有配偶率も離婚率も大卒者の方が低い

同類婚 (Assortative Mating) の増加

 $\rho = 0.41$

Table 1—Assortative Mating, Ages 25–54

	1960			2005		
Husband	W	ife	Husband	Wife		
< College College	< College 0.855 (0.821) 0.082 (0.115)	College 0.023 (0.056) 0.041 (0.008)	< College College	< College 0.545 (0.427) 0.109 (0.227)	College 0.108 (0.226) 0.237 (0.120)	
Statistics Measuring Assortative Mating						
	obs. $= 195,034$		$\chi^2 = 77,739$	obs. $= 288,423$		

 $\rho = 0.52$

 $\delta = 1.43$

- ▶ 経済学で同類婚 (assortative mating) とは,教育などの属性が似た者同士の結婚を指す
 - ightarrow assortative matching, educational homogamy とも呼ばれる
- ightharpoonup Table 1 によれば, 同類婚傾向が見られる. χ^2 検定でランダムマッチングが棄却される
- ▶ 相関係数 ρ やトレースのランダムマッチとの比 δ で計測によると, 同類婚が増加している
- ▶ 同類婚の計測方法に関する議論は Chiappori et al. (2025) を参照

 $\delta = 1.08$

女性の教育と労働参加率の上昇

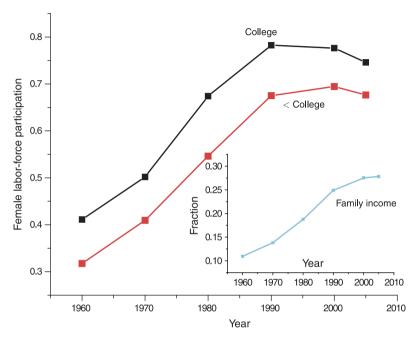


FIGURE 3. THE INCREASE IN MARRIED FEMALE LABOR-FORCE PARTICIPATION

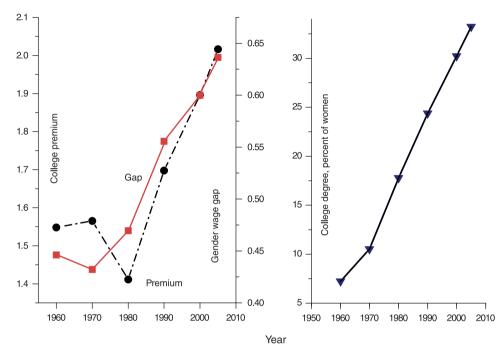


FIGURE 4. THE RISE IN FEMALE EDUCATIONAL ATTAINMENT, THE COLLEGE PREMIUM, AND THE NARROWING OF THE GENDER WAGE GAP

- ▶ 女性の教育水準と労働参加率が大きく上昇. ジェンダーギャップ (女性の相対賃金) も縮小
- ▶ 賃金の大卒プレミアムの上昇に起因か

世帯間所得格差の増加

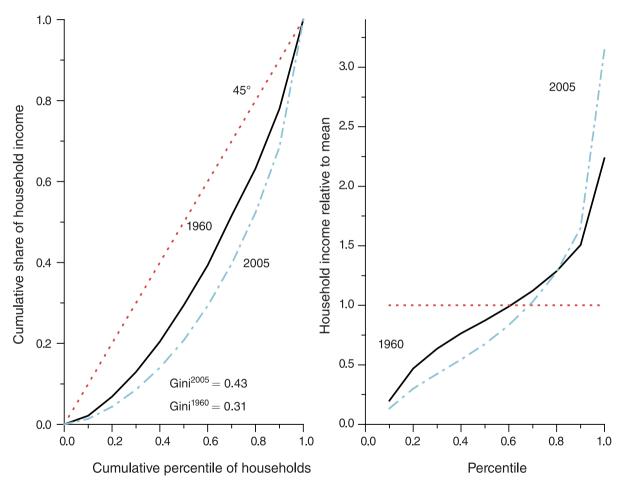


FIGURE 5. THE INCREASE IN HOUSEHOLD INCOME INEQUALITY

設定

- ▶ 1期を1年とした無限期間モデル. 毎期の死亡確率 δ
- エージェントは男性 m と女性 f
- ト 各エージェントは、能力 $a \sim A(a)$ を持つ
- ▶ 各エージェントは教育 $e \in \{0,1\}$ を (結婚市場に参入する前に) 選択する.
- ▶ 独身者は毎期ランダムに他の独身者と出会い以下の要素に基づいて結婚
 - → 相手の能力 a*
 - \rightarrow 相手の教育 e^*
 - \rightarrow マッチングの質 b
 - \rightarrow 女性の労働参加に対するコストq
- ▶ 有配偶者は毎期,マッチングの質bが上下し,bの値に基づいて離婚を決定
- ト 各期,各エージェントは単位時間 1 を持ち,そのうち h を労働に 1-h を家事に使う
- ▶ $h = \{0, \overline{h}\}$ のフルタイム労働もしくは働かない選択肢がある
- ▶ 結婚後は男性はフルタイム労働のみ,女性はフルタイム労働もしくは家事に専念できる

設定

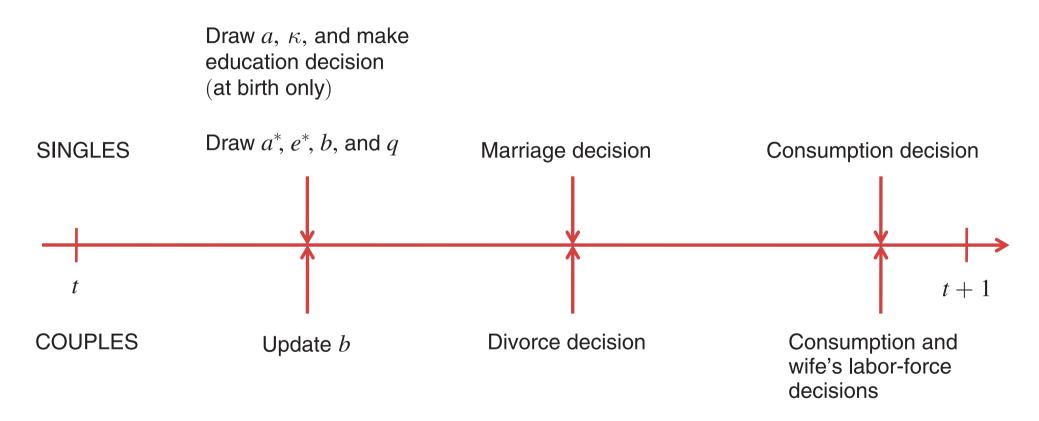


FIGURE 6. TIMING OF DECISIONS

教育と時給

時給は,能力a,教育e,ジェンダーgに依存する:

- ▶ 教育レベル $e \in \{0,1\}$ の男性は時給 $w_e a. w_1 > w_0$
- ▶ 女性の時給は $\phi w_e a, \phi \in [0,1]$. ジェンダーギャップを反映

教育を受けるコスト κ はg とa ごとに異なる分布 $C_a^g(\kappa)$ に従う:

$$\kappa \sim \mathcal{N}\left(\frac{\eta_g}{a}, \sigma_\kappa^2\right).$$

▶ 能力aの高い人ほど教育を受けるコストが(平均的に)低いという仮定

効用関数

$$T_s(c,n) = \frac{1}{1-\zeta}(c-\overline{c})^{1-\zeta} + \frac{\alpha}{1-\xi}n^{1-\xi} \qquad \text{Single}$$

$$T_m(c,n) = \frac{1}{1-\zeta}\left(\frac{c-\overline{c}}{1+\gamma}\right)^{1-\zeta} + \frac{\alpha}{1-\xi}n^{1-\xi} \text{ Married}$$

- ▶ c: 消費. ē は最低消費
- \triangleright 1 + χ : 消費のスケーリング (Economies of scale)

家庭内生産 n

$$n = \left(\theta d^{\lambda} + (1-\theta)(z-h_T)^{\lambda}\right)^{1/\lambda}$$

- ▶ $z \in \{1,2\}$: 世帯サイズごとの合計時間
- ▶ *h_T*: 世帯の合計労働時間
- ▶ $\lambda \in (0,1)$: 家事財と家事時間の代替弾力性パラメータ. $\lambda > 0$ で, 代替的

家計の意思決定

独身者

$$U_S^g(a,e) := \max_{c,d} T_S(c,n),$$

subject to

$$c = \begin{cases} w_e \phi a \overline{h} - pd & \text{if} \quad g = f, \\ w_e a \overline{h} - pd & \text{if} \quad g = m, \end{cases}$$

and

$$n = \left(\theta d^{\lambda} + (1 - \theta) \left(1 - \overline{h}\right)^{\lambda}\right)^{1/\lambda}.$$

家計の意思決定

有配偶者

$$U_{M}^{g}\big(a,e,a^{*},e^{*},b,q\big) \coloneqq \max_{c,d,h^{f}} T_{M}(c,n) + h^{f}q,$$

subject to

$$c = \begin{cases} w_e^* a^* \overline{h} + w_e \phi a \overline{h} h^f - pd & \text{if} \quad g = f, \\ w_e a \overline{h} + w_{e^*} \phi a^* \overline{h} h^f - pd & \text{if} \quad g = m, \end{cases}$$

and

$$n = \left(\theta d^{\lambda} + (1 - \theta) \left(2 - \overline{h} - \overline{h} h^f\right)^{\lambda}\right)^{1/\lambda}.$$

マッチングの質りの推移

独身: 独身者 g は各期の終わりに, a^* , e^* を持つ独身の異性 g^* と出会い, 以下を引く

- ▶ $b \sim \mathcal{N}(\bar{b}_s, \sigma_{b,s}^2)$: マッチングの質
- ▶ $q \in Q^e = \{q_I^e, q_h^e\}$: 女性の労働参加に対するコスト
 - ightarrow 男性の教育 e に依存する. $q_l^e < q_h^e$ を仮定し, $\frac{1}{2}$ ずつの確率で選ばれる

有配偶者: マッチングの質b は毎期AR(1)過程によって変動する

$$b' = \left(1 - \rho_{b,m}\right) \overline{b}_m + \rho_{b,m} b + \sigma_{b,m} \sqrt{1 - \rho_{b,m}^2} \varepsilon, \text{ with } \varepsilon \sim \mathcal{N}(0,1)$$

結婚と離婚の決定

独身者の価値関数 $V_S^g(a,e)$ と有配偶者の価値関数 $V_M^g(a,e,a^*,e^*,b,q)$ において, 結婚は以下の不等式が満たされる場合に起きる.

$$V_m^g(a, e, a^*, e^*, b, q) \ge V_S^g(a, e)$$
 and $V_m^{g^*}(a^*, e^*, a, e, b, q) \ge V_S^{g^*}(a^*, e^*)$.

この婚姻状態を表すインディケータを $\mathbb{1}^g(a,e,a^*,e^*,b,q)$ とする.

ベルマン方程式

独身者

$$\begin{split} V_S^g(a,e) &= U_S^g(a,e) \\ &+ \beta \int_{\mathcal{B}} \int_{\mathcal{T}} \int_{\mathcal{Q}} \mathbb{1}^g \big(a,e,a^*,e^*,b,q \big) V_m^g \big(a,e,a^*,e^*,b,q \big) \\ &+ \big(1 - \mathbb{1}^g \big(a,e,a^*,e^*,b,q \big) \big) V_m^g \big(a,e,a^*,e^*,b,q \big) \, dQ(q) \, d\hat{S}^{g^*} \big(a^*,e^* \big) \, dF(b). \end{split}$$

ここで, $\hat{S}^{g^*}(a^*,e^*)$ は異性の独身者の a^*,e^* の (独身者の数で標準化された) 分布を表す.

有配偶者

$$\begin{split} V_m^g \big(a, e, a^*, e^*, b, q \big) &= U_M^g \big(a, e, a^*, e^*, b, q \big) + b + M \big(e, e^* \big) \\ &+ \beta \int_{\mathcal{B}} \mathbb{1}^g \big(a, e, a^*, e^*, b, q \big) V_m^g \big(a, e, a^*, e^*, b', q \big) \\ &+ \big(1 - \mathbb{1}^g \big(a, e, a^*, e^*, b', q \big) \big) V_s^g (a, e) \, dG(b' \mid b). \end{split}$$

教育の選択

結婚市場に参入する前に自身の教育に対するコスト κ に基づいて教育を選択する.

$$\max_{e \in \{0,1\}} V_S^g(a,e) - e\kappa.$$

教育の意思決定を $E_a^g(\kappa)$ とする. 明らかに,

$$E_a^g(\kappa) = \begin{cases} 1 & \text{if } \kappa \leq V_S^g(a,1) - V_S^g(a,0), \\ 0 & \text{otherwise} \end{cases}$$

よって,大学教育を受けるgの人数(確率)は以下のように表される.

$$\int_{\mathcal{K}} \int_{\mathcal{A}} E_a^g(\kappa) \, dC_a^g(\kappa) \, dA(a).$$

結婚市場均衡

均衡において, 独身者の分布 $S^g(a,e)$ と有配偶者の分布 $M^g(a,e,a^*,e^*,b_{-1},q)$ は g=m,f に対して, 以下の条件を満たす定常分布である.

$$\begin{split} &M^g \left({'a,e',a^{(*)'},e^{(*)'},b',q'} \right) \\ &= (1-\delta) \int_{\mathcal{B}}^{b'} \int_{\mathcal{T}}^{a',e'} \int_{\mathcal{T}}^{a^{(*)'},e^{(*)'}} \int_{\mathcal{Q}}^{q'} \mathbbm{1} \left(a,e,a^*,e^*,b,q \right) dQ(q) \, d\hat{S}^{g^*} \left(a^*,e^* \right) dS^g(a,e) \, dF(b) \\ &+ (1-\delta) \int_{\mathcal{B}}^{b'} \int_{\mathcal{T}}^{b'} \int_{\mathcal{T}}^{a',e'} \int_{\mathcal{T}}^{a^{(*)'},e^{(*)'}} \int_{\mathcal{Q}}^{q'} \mathbbm{1}^g \left(a,e,a^*,e^*,b,q \right) dM^g \left(a,e,a^*,e^*,b_{-1},q \right) dG(b \mid b_{-1}) \end{split}$$

結婚市場均衡

$$\begin{split} &S^g(a',e') \\ &= (1-\delta) \int_{\mathcal{B}} \int_{\mathcal{T}} \int_{\mathcal{T}}^{a',e'} \int_{\mathcal{Q}} \left(1 - \mathbbm{1} \big(a,e,a^*,e^*,b,q\big) \big) \, dQ(q) \, dS^g(a,e) \, d\hat{S}^{g^*} \big(a^*,e^*\big) \, dF(b) \\ &+ (1-\delta) \int_{\mathcal{B}} \int_{\mathcal{T}} \int_{\mathcal{T}}^{a',e'} \int_{\mathcal{Q}} \left(1 - \mathbbm{1}^g \big(a,e,a^*,e^*,b,q\big) \big) \, dM^g \big(a,e,a^*,e^*,b_{-1},q\big) \, dG(b \mid b_{-1}) \\ &+ \delta e' \int_{\mathcal{A}}^{a'} \int_{\mathcal{K}} E_a^g(\kappa) \, dC_a^g(\kappa) \, dA(a) + \delta (1-e') \int_{\mathcal{A}}^{a'} \int_{\mathcal{K}} \left(1 - E_a^g(\kappa) \right) dC_a^g(\kappa) \, dA(a). \end{split}$$

ここで, $\hat{S}^{g^*}(a^*,e^*)$ は異性の独身者 a^*,e^* の (独身者の数で標準化された) 分布を表す. つまり, 独身者の目から見たランダムにマッチングする相手の分布である.

$$\hat{S}^{g^*}(a^*, e^*) \coloneqq \frac{S^{g^*}(a^*, e^*)}{\int_{\mathcal{T}} dS^{g^*}(a^*, e^*)}.$$

A Priori Information

TABLE 2—PARAMETERS: A PRIORI INFORMATION

Category	Parameter values	Criteria
Preferences	$\chi = 0.70$	OECD scale
	$\tilde{\beta} = 0.96$	Prescott (1986)
Household technology	$\theta = 0.21, \lambda = 0.19$	McGrattan et al. (1997)
Death probability	$\delta = 1/30$	A 30-year lifespan
Hours	$\overline{h} = 0.36$	Data

- ▶ $1/\delta = 30$: 平均寿命 (25 歳から 54 歳までの期間)
- $\overline{h}=0.36$: 週 40 時間の労働 / (16 時間/日 imes7 日)

Simulated Method of Moments (SMM)

Table 4—Data and Benchmark Model, 196	Table 4—	-Data an	D BENCHMARK	Model,	1960
---------------------------------------	----------	----------	-------------	--------	------

	D_{ϵ}	ata	Mo	del	
Education	Fem.	Males	Fem.	Males	
	0.072	0.125	0.074	0.129	
Marriage					
Fraction	Sing.	Marr.	Sing.	Marr.	
	0.130	0.870	0.151	0.849	
Rates	< Coll.	Coll.	< Coll.	Coll.	
Marriage	0.925	0.849	0.888	0.882	
Divorce	0.053	0.033	0.044	0.040	
Sorting	W	Wife		ife	
Husband	< Coll.	Coll.	< Coll.	Coll.	
< College	0.855	0.023	0.843	0.028	
College	0.082	0.041	0.085	0.045	
Corr., educ.	0.4	0.414		0.403	

Work, Married Fem. Husband	Wife		Wife	
< College College Participation, all Income, fraction	< Coll. 0.328 0.213 0.3		< Coll. Coll. 0.318 0.586 0.207 0.294 0.315 0.122	
Inequality Gini Ratio 90/10 Ratio 90/50	0.3 4.8 1.8		0.307 4.536 2.043	
Income, Sf/Married	0.4	.73	0.393	
Income, Marriage Husband	W	ife	Wife	
< College College	< Coll. 0.932 1.369	Coll. 1.335 1.501	< Coll. 0.943 1.400	Coll. 0.700 1.501
Skill premium Gender gap	1.548 0.446		1.565 0.419	

残り 22 個のパラメータは 1960 年のデータによる 24 個のターゲットを用いて SMM

Estimated Parameters

Table 3—Parameters: Estimated (Minimum distance)

Category	Parameter values	Standard error	95 percent conf. interval
Preferences	$\alpha = 1.198$	0.029	[1.141, 1.255]
	$\xi = 3.114$	0.021	[3.073, 3.155]
	$\zeta = 1.782$	0.010	[1.762, 1.803]
	c = 0.068	0.0004	[0.067, 0.069]
	$\mu_0 = 0.400$	0.170	[0.067, 0.733]
	$\mu_1 = 1.308$	0.094	[1.124, 1.492]
Ability shocks	$\sigma_a^2 = 0.310$	0.003	[0.304, 0.315]
Marital bliss shocks	$\overline{b}_s = -1.497$	0.111	[-1.715, -1.279]
	$\sigma_{b,s}^2 = 0.599$	0.075	[0.451, 0.746]
	$\overline{b}_m = -0.403$	0.029	[-0.459, -0.347]
	$\sigma_{b,m}^2 = 0.338$	0.028	[0.284, 0.393]
	$\rho_{b,m} = 0.959$	0.004	[0.951, 0.967]
Home shocks	$q_l^{0} = 0.175$	0.066	[0.046, 0.305]
	$q_h^0 = 0.303$	0.127	[0.053, 0.552]
	$q_l^1 = -0.226$	0.066	[-0.354, -0.097]
	$q_h^1 = -0.126$	0.123	[-0.367, 0.115]
Price and wages	$p_{1960} = 54.703$	8.219	[38.594, 70.812]
	$w_{0,1960} = 1$ (normalization)	_	_
	$w_{1,1960} = 1.040$	0.015	[1.011, 1.068]
	$\phi_{1960} = 0.400$	0.002	[0.396, 0.404]
Cost of education	$\eta_m = 69.861$	5.525	[59.031, 80.690]
	$\eta_f = 134.970$	8.770	[117.781, 152.159]
	$\sigma_{\kappa} = 54.134$	4.871	[44.587, 63.681]

Estimated Parameters

結婚のショック

- $ar{b}_s = -1.497 < 0$: 独身者のマッチングの質は平均的に負. 良い相手を待つ
- $ar{b}_s < ar{b}_m$: 有配偶者のマッチングの質は独身者のランダムな出会いよりも良い
- $ightharpoonup \sigma_{b,s} > \sigma_{b,m}$: 独身者のマッチングの質の方がばらつきが大きい
- $ho_{b,m}=0.959$: 有配偶者のマッチングの質の自己相関はかなり高い

女性の労働参加に対するコスト

- $p_l^1, q_h^1 < 0$: 男性が大卒であると, 共働きにメリットがある
- ▶ 具体的な解釈は論文中では与えられていない. 複合的な要因を内包していると考えられる
 - → 男女の性的役割分担の価値観の差を反映している
 - → 学歴からくる職種の違いによる,休みの取りやすさの違い

Moving Forward to 2005

方針

- ▶ 1960 年のデータを用いてカリブレーションしたモデルを 2005 年まで拡張
- ▶ 賃金,教育,家庭内生産に関するパラメータを 2005 年のデータに対して推定
- ▶ これらのパラメータの変化が結婚や離婚に与える影響を定量化

カリブレーション

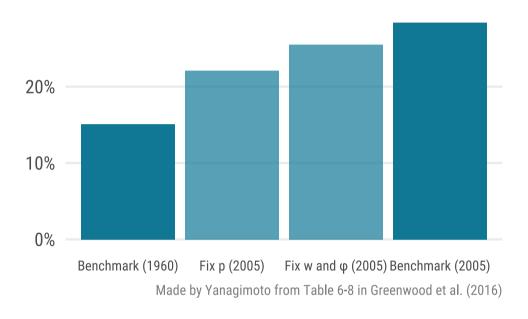
- 1. データから直接パラメータを推定
 - $\mathbf{w}_{0.2005} = 1.17$: 大卒未満の男性の賃金が 17% 上昇した
 - ▶ $p_{2005} = p_{1960}e^{-0.05(2005-1960)}$: Gordon (1990), NIPA などを元に毎年 5% 下落と仮定
- 2. 2005 年のデータを用いて SMM (次ページ)

Moving Forward to 2005

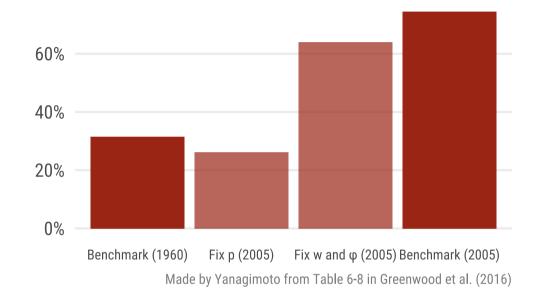
SMM

論文の記述では正確には分からなかったが、おそらく以下のようなターゲットを用いている.

Parameter	Target	2005	(1960)
$w_{1,2005} = 1.81$	Skill premium of college	2.020	1.550
$\varphi_{2005}=0.59$	Female relative earnings	0.640	0.450
$\eta_{f,2005} = 66.45$	Share of college, females	0.332	0.072
$\eta_{m,2005} = 55.75$	Share of college, males	0.318	0.125

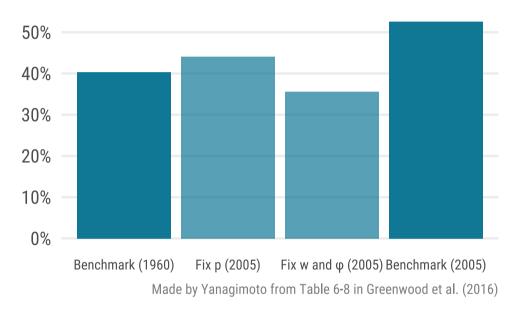

この結果は論文中では Table 5 に示されているが, Assortative matching をよりデータに近づけるために, さらに以下のパラメータを調整している.

$$\mu_{0,2005} = 0.214, \mu_{1,2005} = 0.375$$


- ▶ 1960 年と比べて階級意識 (class conciousness) が低くなったと解釈される
- ▶ データの当てはまりは良くなる (Table 6, 省略)

Counterfactuals

独身の割合


有配偶女性の労働参加率

- \blacktriangleright 結婚はp,wの両方によって減少
 - \rightarrow Home goods の技術が進展しない (Fix p) と, 結婚は魅力的 (協力できるので)
 - \rightarrow 賃金が上昇しない (Fix w and ϕ) と, 結婚は魅力的 (家計の所得が増えるので)
- ▶ 女性の労働参加に寄与するのは主に Home goods の技術進展
 - → 女性の方が賃金が低いという構造は変わらないので,家事負担は女性に寄ったまま

Counterfactuals

学歴の相関係数

世帯所得のジニ係数

- ▶ 賃金の上昇は同類婚の増加と世帯所得の格差拡大に寄与
 - → 大卒の賃金上昇が大きく,大卒者への需要が高め,同類婚傾向を強める
 - → 大卒者の賃金上昇が大きく,同類婚傾向を強め,世帯所得の格差を広げる

まとめ

サーチモデルと異質性

- ▶ エージェントの異質性 (教育, 能力) を考慮したサーチモデル. Greenwood and Guner (2009) と異なり 2 つのジェンダーも考慮
 - \rightarrow 本質的には定常分布 \mathcal{S} や \mathcal{M} の次元数が増加するだけ
- ▶ 学歴ごとの結婚行動の違いや同類婚を扱うことが可能

賃金の上昇と家事の技術進展

▶ 賃金の上昇と家事の技術進展が,結婚の減少,女性の労働参加率の上昇,同類婚の増加,世帯 所得の格差拡大などに与える影響を定量化

参考文献

- Chiappori, Pierre-André, Monica Costa Dias, Costas Meghir, and Hanzhe Zhang. 2025. "Changes in Marital Sorting: Theory and Evidence from the United States". Journal of Political Economy, May, 0. https://doi.org/10.1086/736764.
- Gayle, George-Levi, and Andrew Shephard. 2019. "Optimal Taxation, Marriage, Home Production, And Family Labor Supply". Econometrica 87 (1): 291–326. https://doi.org/10. 3982/ECTA14528.
- Greenwood, Jeremy, and Nezih Guner. 2009. "Marriage and Divorce since World War II: Analyzing the Role of Technological Progress on the Formation of Households". NBER Macroeconomics Annual 2008, Volume 23. University of Chicago Press.
- Greenwood, Jeremy, Nezih Guner, Georgi Kocharkov, and Cezar Santos. 2016. "Technology and the Changing Family: A Unified Model of Marriage, Divorce, Educational Attainment, And Married Female Labor-Force Participation". American Economic Journal: Macroeconomics 8 (1): 1–41. https://doi.org/10.1257/mac.20130156.

参考文献

Reynoso, Ana. 2024. "The Impact of Divorce Laws on the Equilibrium in the Marriage Market". Journal of Political Economy 132 (12): 4155–4204. https://doi.org/10.1086/732532.